SET PARTITIONING VIA INCLUSION-EXCLUSION

被引:214
|
作者
Bjorklund, Andreas [1 ]
Husfeldt, Thore [1 ]
Koivisto, Mikko [2 ,3 ]
机构
[1] Lund Univ, Dept Comp Sci, S-22100 Lund, Sweden
[2] Aalto Univ, Helsinki Inst Informat Technol, Basic Res Unit, FIN-00014 Helsinki, Finland
[3] Univ Helsinki, Dept Comp Sci, FIN-00014 Helsinki, Finland
关键词
set partition; graph coloring; exact algorithm; zeta transform; inclusion-exclusion; INDEPENDENT SETS; ALGORITHM; NUMBER; COMPLEXITY; COLORINGS; SPARSE;
D O I
10.1137/070683933
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Given a set N with n elements and a family F of subsets, we show how to partition N into k such subsets in 2(n) n(O)(1) time. We also consider variations of this problem where the subsets may overlap or are weighted, and we solve the decision, counting, summation, and optimization versions of these problems. Our algorithms are based on the principle of inclusion-exclusion and the zeta transform. In effect we get exact algorithms in 2(n) n(O)(1) time for several well-studied partition problems including domatic number, chromatic number, maximum k-cut, bin packing, list coloring, and the chromatic polynomial. We also have applications to Bayesian learning with decision graphs and to model-based data clustering. If only polynomial space is available, our algorithms run in time 3(n) n(O)(1) if membership in F can be decided in polynomial time. We solve chromatic number in O(2.2461(n)) time and domatic number in O(2.8718(n)) time. Finally, we present a family of polynomial space approximation algorithms that find a number between chi(G) and inverted right perpendicular(1 + epsilon)chi(G)inverted left perpendicular in time O(1.2209(n) + 2.2461(e-epsilon n)).
引用
收藏
页码:546 / 563
页数:18
相关论文
共 50 条
  • [21] An improvement of the inclusion-exclusion principle
    Klaus Dohmen
    Archiv der Mathematik, 1999, 72 : 298 - 303
  • [22] AN ELEMENTARY PROOF OF INCLUSION-EXCLUSION FORMULAS
    JOHNSON, BR
    AMERICAN MATHEMATICAL MONTHLY, 1980, 87 (09): : 750 - 751
  • [23] Inclusion-exclusion: Which terms cancel?
    K. Dohmen
    Archiv der Mathematik, 2000, 74 : 314 - 316
  • [24] Inclusion-exclusion complexes for pseudodisk collections
    H. Edelsbrunner
    E. A. Ramos
    Discrete & Computational Geometry, 1997, 17 : 287 - 306
  • [25] Inclusion-exclusion: Which terms cancel?
    Dohmen, K
    ARCHIV DER MATHEMATIK, 2000, 74 (04) : 314 - 316
  • [26] Inclusion-exclusion principle for belief functions
    Aguirre, F.
    Destercke, S.
    Dubois, D.
    Sallak, M.
    Jacob, C.
    INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2014, 55 (08) : 1708 - 1727
  • [27] Invitation to Algorithmic Uses of Inclusion-Exclusion
    Husfeldt, Thore
    AUTOMATA, LANGUAGES AND PROGRAMMING, ICALP, PT II, 2011, 6756 : 42 - 59
  • [28] Enumeration of cubic graphs by inclusion-exclusion
    Chen, WYC
    Louck, JD
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 1999, 86 (01) : 151 - 157
  • [29] THE INCLUSION-EXCLUSION PRINCIPLE FOR IF-STATES
    Ciungu, L. C.
    Riecan, B.
    IRANIAN JOURNAL OF FUZZY SYSTEMS, 2014, 11 (02): : 17 - 25
  • [30] THE INCLUSION-EXCLUSION PRINCIPLE FOR IF-EVENTS
    Kelemenova, J.
    Samuelcik, K.
    ACTA MATHEMATICA HUNGARICA, 2012, 134 (04) : 511 - 515