Comparison of thermal insulation performance of vacuum insulation panels with EPS protection layers measured with different methods

被引:38
|
作者
Lakatos, Akos [1 ]
Kovacs, Zsolt [2 ]
机构
[1] Univ Debrecen, Fac Engn, Dept Bldg Serv & Bldg Engn, Debrecen Otemeto Str 2-4, H-4028 Debrecen, Hungary
[2] INOX THERM Kft, Honved Str 8-1 2, H-1054 Budapest, Hungary
关键词
Hot box method; U-value; Vacuum insulation panels; Thermal insulation; SERVICE LIFE; VIPS; VERIFICATION;
D O I
10.1016/j.enbuild.2021.110771
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
For reducing the energy use of buildings, the application of insulation materials can be a possible solution to improve energy efficiency. However, with the continuously tightening regulations, thicker and thicker insulations should be used (e.g., up to 20?25 cm in Hungary and about 40?50 cm in the Nordic countries) to fulfil the directives. In the past decades, developmental research started to focus on both decreasing the thickness and decreasing the thermal conductivity of materials parallels. With this research direction, the investigations of the new type of insulation materials took place. The use of materials having thermal conductivity with less than 0.020 W/mK spread over. These materials are the so-called super insulation materials. Besides Vacuum Insulation Panels (VIPs), aerogel-based materials belong to this group, too. This paper will present laboratory tests executed on two altered types of protected Vacuum Insulation Panels: a one side and a 2 side protected VIP, also called Vacuum Insulation Sandwich (VIS). The first one, type ?A? contains 20 mm thick laminated fumed silica, covered with 10 mm thick expanded polystyrene on one side, while type ?B? was the one where the 10 mm thick laminated fumed silica core was packed between two 10 mm thick EPS slabs. Firstly, thermal insulation performance was investigated by the so-called guarded hot-box method for U-value, where the samples were placed on a solid brick wall. Furthermore, the thermal insulation performance of protected VIPs was also tested with Hukseflux heat flux plates. To reveal the applicability limits caused by the thermal bridges infrared thermography images (IR) were taken, too. From the images and the measurement results, a theory was formed regarding the heat flow directions inside the encapsulated panels. The current article emphasizes the equivalent thermal conductivity for the assessment of the thermal protection performance of vacuum insulation panels. The paper states that by using VIPs at least, 70% reduction can be reached in the Uvalue compared to the value of the solid brick wall. Moreover, the paper points out that the use of EPS protection layer on both sides of the VIP has a promising effect by reducing the thermal bridges. Furthermore, the VIP protected with EPS slabs on both sides results in less equivalent thermal conductivity. ? 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license For reducing the energy use of buildings, the application of insulation materials can be a possible solution to improve energy efficiency. However, with the continuously tightening regulations, thicker and thicker insulations should be used (e.g., up to 20-25 cm in Hungary and about 40-50 cm in the Nordic countries) to fulfil the directives. In the past decades, developmental research started to focus on both decreasing the thickness and decreasing the thermal conductivity of materials parallels. With this research direction, the investigations of the new type of insulation materials took place. The use of materials having thermal conductivity with less than 0.020 W/mK spread over. These materials are the so-called super insulation materials. Besides Vacuum Insulation Panels (VIPs), aerogel-based materials belong to this group, too. This paper will present laboratory tests executed on two altered types of protected Vacuum Insulation Panels: a one side and a 2 side protected VIP, also called Vacuum Insulation Sandwich (VIS). The first one, type "A" contains 20 mm thick laminated fumed silica, covered with 10 mm thick expanded poly-styrene on one side, while type "B" was the one where the 10 mm thick laminated fumed silica core was packed between two 10 mm thick EPS slabs. Firstly, thermal insulation performance was investi-gated by the so-called guarded hot-box method for U-value, where the samples were placed on a solid brick wall. Furthermore, the thermal insulation performance of protected VIPs was also tested with Hukseflux heat flux plates. To reveal the applicability limits caused by the thermal bridges infrared ther-mography images (IR) were taken, too. From the images and the measurement results, a theory was formed regarding the heat flow directions inside the encapsulated panels. The current article emphasizes the equivalent thermal conductivity for the assessment of the thermal protection performance of vacuum insulation panels. The paper states that by using VIPs at least, 70% reduction can be reached in the U-value compared to the value of the solid brick wall. Moreover, the paper points out that the use of EPS protection layer on both sides of the VIP has a promising effect by reducing the thermal bridges. Furthermore, the VIP protected with EPS slabs on both sides results in less equivalent thermal conductivity. (c) 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Thermal performance of a building envelope incorporating ETICS with vacuum insulation panels and EPS
    Mandilaras, I.
    Atsonios, I.
    Zannis, G.
    Founti, M.
    ENERGY AND BUILDINGS, 2014, 85 : 654 - 665
  • [2] Thermal Performance of LSF Wall Systems with Vacuum Insulation Panels
    Rajanayagam, Heshachanaa
    Upasiri, Irindu
    Poologanathan, Keerthan
    Gatheeshgar, Perampalam
    Sherlock, Paul
    Konthesingha, Chaminda
    Nagaratnam, Brabha
    Perera, Dilini
    BUILDINGS, 2021, 11 (12)
  • [3] Thermal and sound insulation performance assessment of vacuum insulated composite insulation panels for building facades
    O'Flaherty, Fin
    Alam, Mahmood
    ADVANCES IN BUILDING ENERGY RESEARCH, 2021, 15 (03) : 270 - 290
  • [4] Comparison of thermal insulation performance of foam extruded black EPS
    Erunal, E.
    POLYMER BULLETIN, 2024, 81 (18) : 16595 - 16605
  • [5] Effective thermal conductivity of vacuum insulation panels
    Ghazi Wakili, K
    Bundi, R
    Binder, B
    BUILDING RESEARCH AND INFORMATION, 2004, 32 (04): : 293 - 299
  • [6] Comparative performance analysis of Vacuum Insulation Panels in thermal window shutters
    Hashemi, Arman
    Alam, Mahmood
    Ip, Kenneth
    TECHNOLOGIES AND MATERIALS FOR RENEWABLE ENERGY, ENVIRONMENT AND SUSTAINABILITY (TMREES), 2019, 157 : 837 - 843
  • [7] The Effect of Lightweight Concrete Cores on the Thermal Performance of Vacuum Insulation Panels
    Chung, Sang-Yeop
    Sikora, Pawel
    Stephan, Dietmar
    Abd Elrahman, Mohamed
    MATERIALS, 2020, 13 (11)
  • [8] Aerogels for optimized performance in vacuum insulation panels
    Rouanet, S
    Floess, J
    2001: A MATERIALS AND PROCESSES ODYSSEY, BOOKS 1 AND 2, 2001, 46 : 1263 - 1270
  • [9] Prediction method of the long-term thermal performance of Vacuum Insulation Panels installed in building thermal insulation applications
    Batard, A.
    Duforestel, T.
    Flandin, L.
    Yrieix, B.
    ENERGY AND BUILDINGS, 2018, 178 : 1 - 10
  • [10] Vacuum insulation round robin to compare different methods of determining effective vacuum insulation panel thermal resistance
    Stovall, TK
    Brzezinski, A
    INSULATION MATERIALS: TESTING AND APPLICATIONS, 4TH VOLUME, 2002, 1426 : 314 - 325