Highly efficient conversion of waste plastic into thin carbon nanosheets for superior capacitive energy storage

被引:103
|
作者
Liu, Xiaoguang [1 ]
Ma, Changde [2 ]
Wen, Yanliang [1 ]
Chen, Xuecheng [1 ,2 ]
Zhao, Xi [3 ]
Tang, Tao [2 ]
Holze, Rudolf [4 ,5 ,6 ]
Mijowska, Ewa [1 ]
机构
[1] West Pomeranian Univ Technol Szczecin, Fac Chem Technol & Engn, Dept Nanomat Physicochem, Piastow Ave 42, PL-71065 Szczecin, Poland
[2] Chinese Acad Sci, Changchun Inst Appl Chem, State Key Lab Polymer Phys & Chem, Changchun 130022, Peoples R China
[3] Jilin Univ, Inst Theoret Chem, Changchun 130023, Peoples R China
[4] Tech Univ Chemnitz, Inst Chem, AG Elektrochem, D-09107 Chemnitz, Germany
[5] Nanjing Tech Univ, Sch Energy Sci & Engn, State Key Lab Mat Oriented Chem Engn, Nanjing 211816, Jiangsu, Peoples R China
[6] St Petersburg State Univ, Inst Chem, St Petersburg 199034, Russia
基金
中国国家自然科学基金;
关键词
Waste PP; CNS production; Combined catalyst; High carbon yield; Supercapacitor; HIERARCHICAL POROUS CARBON; MIXED PLASTICS; NITROGEN; POLYPROPYLENE; NANOTUBES; SUPERCAPACITORS; CARBONIZATION; FABRICATION; POLYMERS; SPHERES;
D O I
10.1016/j.carbon.2020.09.057
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The wide application of carbon nanosheets (CNS) is still restricted by low production. Meanwhile, the accumulation of waste plastic generates serious environmental pollution. Nowadays, the conversion of waste plastic into two-dimensional CNS is regarded as a promising way to address these issues due to the high carbon content of waste plastic. However, this conversion process is still impeded by low-efficient catalysts so far. Herein, the highly efficient carbonization of waste polypropylene (PP) into CNS is achieved using a combined catalyst of ferrocene and sulfur. The carbonization process in sealed space ensures an ultrahigh carbon yield (62.8%) and a thin thickness (4-4.5 nm) of as-prepared CNS, even though little catalyst is used. After activation, the activated carbon nanosheets (ACNS) show a well-defined hierarchical porous structure with a large specific surface area (3200 m(2) g(-1)) and a big pore volume (3.71 cm(3) g(-1)). The ACNS based electrode delivers a high specific capacitance of 349 F g(-1) at 0.5 A g(-1). The fabricated symmetric supercapacitor manifests a high energy density of 23 Wh kg(-1) at 225 W kg(-1). These findings provide a reference for the efficient conversion of waste plastic into energy storage materials. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页码:819 / 828
页数:10
相关论文
共 50 条
  • [31] Macroscopic synthesis of ultrafine N-doped carbon nanofibers for superior capacitive energy storage
    Yu, Qiang
    Lv, Jianshuai
    Liu, Zhenhui
    Xu, Ming
    Yang, Wei
    Owusu, Kwadwo Asare
    Mai, Liqiang
    Zhao, Dongyuan
    Zhou, Liang
    SCIENCE BULLETIN, 2019, 64 (21) : 1617 - 1624
  • [32] Manganese dioxide nanosheets loaded on the carbon matrix as superior anode materials for advanced energy conversion
    Sanfeng Dong
    Guokun Xie
    Aiqing Huo
    Ruodan Yin
    Ionics, 2022, 28 : 2197 - 2202
  • [33] Manganese dioxide nanosheets loaded on the carbon matrix as superior anode materials for advanced energy conversion
    Dong, Sanfeng
    Xie, Guokun
    Huo, Aiqing
    Yin, Ruodan
    IONICS, 2022, 28 (05) : 2197 - 2202
  • [34] Carbon for energy storage and conversion
    Kang Fei-yu
    He Yan-bing
    Li Bao-hua
    Du Hong-da
    NEW CARBON MATERIALS, 2011, 26 (04) : 246 - 254
  • [35] Synthetic Methodologies and Energy Storage/Conversion Applications of Porous Carbon Nanosheets: A Systematic Review
    Khan, Shaukat
    Ul-Islam, Mazhar
    Ahmad, Mohammed Wasi
    Khan, Muhammad Shariq
    Imran, Muhammad
    Siyal, Sajid Hussain
    Javed, Muhammad Sufyan
    ENERGY & FUELS, 2022, 36 (07) : 3420 - 3442
  • [36] Upcycling of polyethylene terephthalate plastic waste to microporous carbon structure for energy storage
    Mirjalili, Arash
    Dong, Bo
    Pena, Pedro
    Ozkan, Cengiz S.
    Ozkan, Mihrimah
    ENERGY STORAGE, 2020, 2 (06)
  • [37] Nanoporous carbon for electrochemical capacitive energy storage
    Shao, Hui
    Wu, Yih-Chyng
    Lin, Zifeng
    Taberna, Pierre-Louis
    Simon, Patrice
    CHEMICAL SOCIETY REVIEWS, 2020, 49 (10) : 3005 - 3039
  • [38] Carbon Materials for Chemical Capacitive Energy Storage
    Zhai, Yunpu
    Dou, Yuqian
    Zhao, Dongyuan
    Fulvio, Pasquale F.
    Mayes, Richard T.
    Dai, Sheng
    ADVANCED MATERIALS, 2011, 23 (42) : 4828 - 4850
  • [39] Facile and Scalable Fabrication of Nitrogen-Doped Porous Carbon Nanosheets for Capacitive Energy Storage with Ultrahigh Energy Density
    Xiao, Yingbo
    Huang, Jun
    Xu, Yazhou
    Yuan, Kai
    Chen, Yiwang
    ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (22) : 20029 - 20036
  • [40] 2D nickel oxide nanosheets with highly porous structure for high performance capacitive energy storage
    Li, Zijiong
    Zhang, Weiyang
    Liu, Yanyue
    Guo, Jinjin
    Yang, Baocheng
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2018, 51 (04)