Genome editing for targeted improvement of plants

被引:22
|
作者
Khandagale, Kiran [1 ]
Nadaf, Altafhusain [1 ]
机构
[1] Savitribai Phule Pune Univ, Dept Bot, Pune 411007, Maharashtra, India
关键词
ZFN; TALEN; CRISPR/Cas9; Meganuclease; Biosafety; ZINC-FINGER NUCLEASES; STRAND BREAK REPAIR; SITE-DIRECTED MUTAGENESIS; DNA-BINDING SPECIFICITY; TAL EFFECTOR NUCLEASES; HOMOLOGOUS RECOMBINATION; CRISPR/CAS9; SYSTEM; TRANSCRIPTIONAL ACTIVATION; STREPTOCOCCUS-THERMOPHILUS; GENE-EXPRESSION;
D O I
10.1007/s11816-016-0417-4
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Recent advances in gene/genome editing technologies, such as engineered meganucleases (EMNs), zinc finger nucleases (ZFNs), transcription activator-like effector nuclease (TALENs) and clustered regularly interspaced palindromic repeats (CRISPR/Cas9) allowed researchers to precisely modify or mutate genes. These genome editing tools make double-strand breaks (DSB) in DNA and then repair it by employing error-prone non-homologous end joining (NHEJ) or homology directed repair (HDR) mechanism which leads to mutation in specific location in genome. Since these editing techniques are simple to use, highly efficient and specific as compared to earlier mutation methods, their use in plant biology research is increasing rapidly to enhance biotic and abiotic stress tolerance, increased nutritional value and new trait development. Here, we review the applications of EMNs, ZFNs, TALENs and CRISPR/Cas9 in various plants (cereals, vegetable, oil crops and fruits), comparison of genome editing methods and their biosafety regulations.
引用
收藏
页码:327 / 343
页数:17
相关论文
共 50 条
  • [41] Seamless editing of the chloroplast genome in plants
    Avila, Elena Martin
    Gisby, Martin F.
    Day, Anil
    [J]. BMC PLANT BIOLOGY, 2016, 16
  • [42] Genome editing reagent delivery in plants
    Ghogare, Rishikesh
    Ludwig, Yvonne
    Bueno, Gela Myan
    Slamet-Loedin, Inez H.
    Dhingra, Amit
    [J]. TRANSGENIC RESEARCH, 2021, 30 (04) : 321 - 335
  • [43] Genome Editing with Engineered Nucleases in Plants
    Osakabe, Yuriko
    Osakabe, Keishi
    [J]. PLANT AND CELL PHYSIOLOGY, 2015, 56 (03) : 389 - 400
  • [44] Genome editing reagent delivery in plants
    Rishikesh Ghogare
    Yvonne Ludwig
    Gela Myan Bueno
    Inez H. Slamet-Loedin
    Amit Dhingra
    [J]. Transgenic Research, 2021, 30 : 321 - 335
  • [45] Grand Challenges in Genome Editing in Plants
    Yang, Bing
    [J]. FRONTIERS IN GENOME EDITING, 2020, 2
  • [46] An inducible genome editing system for plants
    Wang, Xin
    Ye, Lingling
    Lyu, Munan
    Ursache, Robertas
    Loytynoja, Ari
    Mahonen, Ari Pekka
    [J]. NATURE PLANTS, 2020, 6 (07) : 766 - +
  • [47] Genome editing for horticultural crop improvement
    Xu, Jiemeng
    Hua, Kai
    Lang, Zhaobo
    [J]. HORTICULTURE RESEARCH, 2019, 6
  • [48] Genome Editing: Revolutionizing the Crop Improvement
    Saurabh, Satyajit
    [J]. PLANT MOLECULAR BIOLOGY REPORTER, 2021, 39 (04) : 752 - 772
  • [49] Genome Editing: Revolutionizing the Crop Improvement
    Satyajit Saurabh
    [J]. Plant Molecular Biology Reporter, 2021, 39 : 752 - 772
  • [50] Trait stacking via targeted genome editing
    Ainley, William M.
    Sastry-Dent, Lakshmi
    Welter, Mary E.
    Murray, Michael G.
    Zeitler, Bryan
    Amora, Rainier
    Corbin, David R.
    Miles, Rebecca R.
    Arnold, Nicole L.
    Strange, Tonya L.
    Simpson, Matthew A.
    Cao, Zehui
    Carroll, Carley
    Pawelczak, Katherine S.
    Blue, Ryan
    West, Kim
    Rowland, Lynn M.
    Perkins, Douglas
    Samuel, Pon
    Dewes, Cristie M.
    Shen, Liu
    Sriram, Shreedharan
    Evans, Steven L.
    Rebar, Edward J.
    Zhang, Lei
    Gregory, Phillip D.
    Urnov, Fyodor D.
    Webb, Steven R.
    Petolino, Joseph F.
    [J]. PLANT BIOTECHNOLOGY JOURNAL, 2013, 11 (09) : 1126 - 1134