Estimation and prediction of time-varying GARCH models through a state-space representation: a computational approach

被引:6
|
作者
Ferreira, Guillermo [1 ]
Navarrete, Jean P. [2 ]
Rodriguez-Cortes, Francisco J. [3 ]
Mateu, Jorge [3 ]
机构
[1] Univ Concepcion, Dept Stat, Concepcion, Chile
[2] Univ Milano Bicocca, Dept Stat & Quantitat Methods, Milan, Italy
[3] Univ Jaume 1, Dept Math, Castellon de La Plana, Spain
关键词
GARCH models; local stationarity; long-range dependence; state-space representation; time-varying models; BOOTSTRAP PREDICTION; FORECAST INTERVALS; KALMAN FILTER; ARCH; VOLATILITY; VARIANCE; SERIES;
D O I
10.1080/00949655.2017.1334778
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We propose a state-space approach for GARCH models with time-varying parameters able to deal with non-stationarity that is usually observed in a wide variety of time series. The parameters of the non-stationary model are allowed to vary smoothly over time through non-negative deterministic functions. We implement the estimation of the time-varying parameters in the time domain through Kalman filter recursive equations, finding a state-space representation of a class of time-varying GARCH models. We provide prediction intervals for time-varying GARCH models and, additionally, we propose a simple methodology for handling missing values. Finally, the proposed methodology is applied to the Chilean Stock Market (IPSA) and to the American Standard&Poor's 500 index (S&P500).
引用
收藏
页码:2430 / 2449
页数:20
相关论文
共 50 条
  • [31] Representing time-varying cyclic dynamics using multiple-subject state-space models
    Chow, Sy-Miin
    Hamaker, Ellen L.
    Fujita, Frank
    Boker, Steven M.
    BRITISH JOURNAL OF MATHEMATICAL & STATISTICAL PSYCHOLOGY, 2009, 62 : 683 - 716
  • [32] A state-space approach to semi-blind adaptive multiuser detection in time-varying environment
    Khan, NM
    Rapajic, PB
    2005 ASIA-PACIFIC CONFERENCE ON COMMUNICATIONS (APCC), VOLS 1& 2, 2005, : 1024 - 1027
  • [33] STATE-SPACE ANALYSIS ON TIME-VARYING CORRELATIONS IN PARALLEL SPIKE SEQUENCES
    Shimazaki, Hideaki
    Amari, Shun-ichi
    Brown, Emery N.
    Gruen, Sonja
    2009 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS 1- 8, PROCEEDINGS, 2009, : 3501 - +
  • [34] Robust H∞ filtering for linear discrete-time state-space models with uncertain time-varying parameters
    Barbosa, KA
    Trofino, A
    de Souza, CE
    2002 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS I-IV, PROCEEDINGS, 2002, : 1389 - 1392
  • [35] ROBUST STABILITY BOUNDS ON TIME-VARYING PERTURBATIONS FOR STATE-SPACE MODELS OF LINEAR DISCRETE-TIME-SYSTEMS
    KOLLA, SR
    YEDAVALLI, RK
    FARISON, JB
    INTERNATIONAL JOURNAL OF CONTROL, 1989, 50 (01) : 151 - 159
  • [36] Steady-state tracking analysis of the RLS algorithm for time-varying channels: A general state-space approach
    Leon, WS
    Taylor, DP
    IEEE COMMUNICATIONS LETTERS, 2003, 7 (05) : 236 - 238
  • [37] Time delay estimation in discrete-time state-space models
    Waschburger, Ronaldo
    Harrop Galvao, Roberto Kawakami
    SIGNAL PROCESSING, 2013, 93 (04) : 904 - 912
  • [38] Time-varying mixture GARCH models and asymmetric volatility
    Haas, Markus
    Krause, Jochen
    Paolella, Marc S.
    Steude, Sven C.
    NORTH AMERICAN JOURNAL OF ECONOMICS AND FINANCE, 2013, 26 : 602 - 623
  • [39] Time-varying Channel Estimation Method Based on State Space
    Ma, Lin
    Zhang, Luyong
    Niu, Xinxin
    Li, Linhua
    INTERNATIONAL SYMPOSIUM ON FUZZY SYSTEMS, KNOWLEDGE DISCOVERY AND NATURAL COMPUTATION (FSKDNC 2014), 2014, : 220 - 229
  • [40] Estimation for a class of generalized state-space time series models
    Fukasawa, T
    Basawa, IV
    STATISTICS & PROBABILITY LETTERS, 2002, 60 (04) : 459 - 473