A Parameter Choosing Method of SVR for Time Series Prediction

被引:0
|
作者
Lin, Shukuan [1 ]
Zhang, Shaomin [1 ]
Qiao, Jianzhong [1 ]
Liu, Hualei [1 ]
Yu, Ge [1 ]
机构
[1] Northeastern Univ, Coll Informat Sci & Engn, Shenyang 110004, Liaoning, Peoples R China
关键词
Parameter choosing; SVR; time series prediction; improved Cross-Validation; epsilon-weighed;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
It is important to choose good parameters in Support Vector Regression (SVR) modeling. Choosing different parameters will influence the accuracy of SVR models. This paper proposes a parameter choosing method of SVR models for time series prediction. In the light of data features of time series, the paper improves the traditional Cross-Validation method, and combines the improved Cross-Validation with epsilon-weighed SVR in order to get good parameters of models. The experiments show that the method is effective for time series prediction.
引用
收藏
页码:130 / 135
页数:6
相关论文
共 50 条
  • [21] Processing time prediction method based on SVR in semiconductor manufacturing
    Zhu, Xue-Chu
    Qiao, Fei
    Journal of Donghua University (English Edition), 2014, 31 (02) : 98 - 101
  • [22] Windspeed prediction method based on SVR and multi-parameter optimization of GA
    Zhu X.-X.
    Xu B.-C.
    Jiao H.-C.
    Han Z.-H.
    Xu, Bo-Chao, 1600, Editorial Department of Electric Machines and Control (21): : 70 - 75
  • [23] A heuristic method for parameter selection in LS-SVM: Application to time series prediction
    Rubio, Gines
    Pomares, Hector
    Rojas, Ignacio
    Javier Herrera, Luis
    INTERNATIONAL JOURNAL OF FORECASTING, 2011, 27 (03) : 725 - 739
  • [24] Local online time series prediction based on the residual compensation with online SVR
    Automatic Test and Control Institute, Harbin Institute of Technology, Harbin 150080, China
    Tien Tzu Hsueh Pao, 2008, SUPPL. (81-85): : 81 - 85
  • [25] Fault Prediction based on Time Series with Online Combined Kernel SVR Methods
    Liu Datong
    Peng Yu
    Peng Xiyuan
    I2MTC: 2009 IEEE INSTRUMENTATION & MEASUREMENT TECHNOLOGY CONFERENCE, VOLS 1-3, 2009, : 1136 - 1139
  • [26] THE TRADE-OFFS IN CHOOSING A TIME-SERIES METHOD
    GARDNER, ES
    JOURNAL OF FORECASTING, 1983, 2 (03) : 263 - &
  • [27] Deterministic Method for the Prediction of Time Series
    Rogoza, Walery
    HARD AND SOFT COMPUTING FOR ARTIFICIAL INTELLIGENCE, MULTIMEDIA AND SECURITY, 2017, 534 : 68 - 80
  • [28] Fractal time series and a prediction method
    Romero-Melendez, Guillermo
    Ojeda-Suarez, Rogelio
    Nava-Huerta, Agustin
    Alberto Garcia-Valdez, Carlos
    TRIMESTRE ECONOMICO, 2008, 75 : 179 - 189
  • [29] GP-based modeling method for time series prediction with parameter optimization and node alternation
    Yoshihara, I
    Aoyama, T
    Yasunaga, M
    PROCEEDINGS OF THE 2000 CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1 AND 2, 2000, : 1475 - 1481
  • [30] A combined robust fuzzy time series method for prediction of time series
    Yolcu, Ozge Cagcag
    Lam, Hak-Keung
    NEUROCOMPUTING, 2017, 247 : 87 - 101