Finite-temperature random-phase approximation for spectroscopic properties of neon plasmas

被引:1
|
作者
Colgan, J. [1 ]
Fontes, C. J.
Csanak, G.
Collins, L. A.
机构
[1] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA
[2] Los Alamos Natl Lab, Div Appl Phys, Los Alamos, NM 87545 USA
[3] Univ Nevada, Dept Phys, Reno, NV 89557 USA
来源
PHYSICAL REVIEW A | 2007年 / 75卷 / 02期
关键词
D O I
10.1103/PhysRevA.75.024701
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
A finite-temperature random-phase approximation (FTRPA) is applied to calculate oscillator strengths for excitations in hot and dense plasmas. Application of the FTRPA provides a convenient, self-consistent method with which to explore coupled-channel effects of excited electrons in a dense plasma. We present FTRPA calculations that include coupled-channel effects. The inclusion of these effects is shown to cause significant differences in the oscillator strength for a prototypical case of P-1 excitation in neon when compared with single-channel and with average-atom calculations. Trends as a function of temperature and density are also discussed.
引用
收藏
页数:4
相关论文
共 50 条
  • [41] PROPERTIES OF RENORMALIZED RANDOM-PHASE APPROXIMATION FOR DILUTE MAGNETIC ALLOYS
    HAMANN, DR
    PHYSICAL REVIEW, 1969, 186 (02): : 549 - &
  • [42] Extension of the second random-phase approximation
    Gambacurta, D
    Grasso, M
    Catara, F
    Sambataro, M
    PHYSICAL REVIEW C, 2006, 73 (02):
  • [43] REMARKS ON EXTENDED RANDOM-PHASE APPROXIMATION
    RAJAGOPAL, AK
    NUCLEAR PHYSICS, 1964, 57 (02): : 435 - &
  • [44] NUCLEAR ROTATION AND RANDOM-PHASE APPROXIMATION
    MARSHALEK, ER
    WENESER, J
    ANNALS OF PHYSICS, 1969, 53 (03) : 569 - +
  • [45] RANDOM-PHASE APPROXIMATION AND BROKEN SYMMETRY
    DAVIS, ED
    HEISS, WD
    JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS, 1986, 12 (09) : 805 - 820
  • [46] Doorway states in the random-phase approximation
    De Pace, A.
    Molinari, A.
    Weidenmuller, H. A.
    ANNALS OF PHYSICS, 2014, 351 : 579 - 592
  • [47] RANDOM-PHASE APPROXIMATION AS A MACROSCOPIC DESCRIPTION
    STRUTINSKY, VM
    ABROSIMOV, VI
    ZEITSCHRIFT FUR PHYSIK A-HADRONS AND NUCLEI, 1990, 336 (03): : 253 - 258
  • [48] Higher Random-Phase Approximation as an Approximation to the Equations of Motion
    Shibuya, Tai-Ichi
    McKoy, Vincent
    PHYSICAL REVIEW A-GENERAL PHYSICS, 1970, 2 (06): : 2208 - 2218
  • [49] Relativistic Random Phase Approximation At Finite Temperature
    Niu, Y. F.
    Paar, N.
    Vretenar, D.
    Meng, J.
    NUCLEAR STRUCTURE AND DYNAMICS '09, 2009, 1165 : 189 - +
  • [50] Self-consistent random-phase approximation for hot finite Fermi systems
    Vdovin, AI
    Kosov, DS
    Nawrocka, W
    THEORETICAL AND MATHEMATICAL PHYSICS, 1997, 111 (02) : 613 - 620