Data Provenance in Agriculture

被引:3
|
作者
Serra da Cruz, Sergio Manuel [1 ]
Ceddia, Marcos Bacis [1 ]
Tavora Miranda, Renan Carvalho [1 ]
Rizzo, Gabriel [1 ]
Klinger, Filipe [1 ]
Cerceau, Renato [1 ,2 ]
Mesquita, Ricardo [4 ]
Cerceau, Ricardo [1 ]
Marinho, Elton Carneiro [1 ]
Schmitz, Eber Assis [1 ]
Sigette, Elaine [3 ]
Cruz, Pedro Vieira [1 ]
机构
[1] Univ Fed Rural Rio de Janeiro, Seropedica, RJ, Brazil
[2] Natl Agcy Supplementary Hlth, Rio De Janeiro, RJ, Brazil
[3] Fed Fluminense Univ, Volta Redonda, RJ, Brazil
[4] SENAI RJ, Rio De Janeiro, RJ, Brazil
关键词
Reproducibility; Soil security; Open data; Data quality; Big data;
D O I
10.1007/978-3-319-98379-0_31
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Soils are probably the most critical natural resource in Agriculture, and soils security represents a critical growing global issue. Soils experiments require vast amounts of high-quality data, are very hard to be reproduced, and there are few studies about data provenance of such tests. We present OpenSoils; it shares knowledge about data-centric soils experiments. OpenSoils is a provenance-oriented and lightweight e-infrastructure that collects, stores, describes, curates and, harmonizes various soil datasets.
引用
收藏
页码:257 / 261
页数:5
相关论文
共 50 条
  • [41] A Data Provenance Visualization Approach
    Yazici, Ilkay Melek
    Karabulut, Erkan
    Aktas, Mehmet S.
    2018 14TH INTERNATIONAL CONFERENCE ON SEMANTICS, KNOWLEDGE AND GRIDS (SKG), 2018, : 84 - 91
  • [42] Decentralised provenance for healthcare data
    Margheri, Andrea
    Masi, Massimiliano
    Miladi, Abdallah
    Sassone, Vladimiro
    Rosenzweig, Jason
    INTERNATIONAL JOURNAL OF MEDICAL INFORMATICS, 2020, 141
  • [43] Enhancing Open Government Data With Data Provenance
    dos Reis, Cleyton P., Jr.
    da Silva, Waldeyr M. C.
    Martins, Luiz C. B.
    Pinheiro, Rodrigo
    Victorino, Marcio C.
    Holanda, Maristela
    11TH INTERNATIONAL CONFERENCE ON MANAGEMENT OF DIGITAL ECOSYSTEMS (MEDES), 2019, : 142 - 149
  • [44] A traceable data fusion based on data provenance
    Qiang, Zhao
    Yongxin, Zhang
    Dequan, Wang
    Yanhui, Ding
    Open Cybernetics and Systemics Journal, 2014, 8 (01): : 462 - 467
  • [45] Pricing Personal Data Based on Data Provenance
    Shen, Yuncheng
    Guo, Bing
    Shen, Yan
    Wu, Fan
    Zhang, Hong
    Duan, Xuliang
    Dong, Xiangqian
    APPLIED SCIENCES-BASEL, 2019, 9 (16):
  • [46] Data Provenance Standards and Recommendations for FAIR Data
    Jauer, Malte-Levin
    Deserno, Thomas M.
    DIGITAL PERSONALIZED HEALTH AND MEDICINE, 2020, 270 : 1237 - 1238
  • [47] DPDS: Assisting Data Science with Data Provenance
    Chapman, Adriane
    Lauro, Luca
    Missier, Paolo
    Torlone, Riccardo
    PROCEEDINGS OF THE VLDB ENDOWMENT, 2022, 15 (12): : 3614 - 3617
  • [48] Securing Big Data Provenance for Auditors: The Big Data Provenance Black Box as Reliable Evidence
    Appelbaum, Deniz
    JOURNAL OF EMERGING TECHNOLOGIES IN ACCOUNTING, 2016, 13 (01) : 17 - 36
  • [49] IVOA Provenance Data Model: Hints from the CTA Provenance Prototype
    Sanguillon, Michele
    Servillat, Mathieu
    Louys, Mireille
    Bonnarel, Francois
    Boisson, Catherine
    Bregeon, Johan
    ASTRONOMICAL DATA ANALYSIS SOFTWARE AND SYSTEMS XXV, 2017, 512 : 581 - 584
  • [50] Permissioned Blockchain for Data Provenance in Scientific Data Management
    Moeller, Julius
    Froeschle, Sibylle
    Hahn, Axel
    INNOVATION THROUGH INFORMATION SYSTEMS, VOL III: A COLLECTION OF LATEST RESEARCH ON MANAGEMENT ISSUES, 2021, 48 : 22 - 38