Bilinear space-time estimates for homogeneous wave equations

被引:96
|
作者
Foschi, D [1 ]
Klainerman, S [1 ]
机构
[1] Princeton Univ, Dept Math, Princeton, NJ 08544 USA
基金
美国国家科学基金会;
关键词
D O I
10.1016/S0012-9593(00)00109-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we pursue a systematic treatment of the regularity theory for products and bilinear forms of solutions of the homogeneous wave equation. We discuss necessary and sufficient conditions for the validity of bilinear estimates, based on L-2 norms in space and time, of derivatives of products of solutions. Also, we give necessary conditions and formulate some conjectures for similar estimates based on (LtLxr)-L-q, norms. (C) 2000 Editions scientifiques et medicales Elsevier SAS.
引用
收藏
页码:211 / 274
页数:64
相关论文
共 50 条
  • [31] SPACE-TIME L∞-ESTIMATES FOR SOLUTIONS OF INFINITE HORIZON SEMILINEAR PARABOLIC EQUATIONS
    Casas, Eduardo
    Kunisch, Karl
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2025, 24 (04) : 482 - 506
  • [32] Space-time error estimates for deep neural network approximations for differential equations
    Philipp Grohs
    Fabian Hornung
    Arnulf Jentzen
    Philipp Zimmermann
    Advances in Computational Mathematics, 2023, 49
  • [33] Holder Estimates in Space-Time for Viscosity Solutions of Hamilton-Jacobi Equations
    Cannarsa, Piermarco
    Cardaliaguet, Pierre
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2010, 63 (05) : 590 - 629
  • [34] Space-time error estimates for deep neural network approximations for differential equations
    Grohs, Philipp
    Hornung, Fabian
    Jentzen, Arnulf
    Zimmermann, Philipp
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2023, 49 (01)
  • [35] On space-time estimates for the Schrodinger operator
    Lee, Sanghyuk
    Rogers, Keith M.
    Seeger, Andreas
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2013, 99 (01): : 62 - 85
  • [36] Existence of density for the stochastic wave equation with space-time homogeneous Gaussian noise
    Balan, Raluca M.
    Quer-Sardanyons, Lluis
    Song, Jian
    ELECTRONIC JOURNAL OF PROBABILITY, 2019, 24
  • [37] REGULARITY OF SOLUTIONS TO SPACE-TIME FRACTIONAL WAVE EQUATIONS: A PDE APPROACH
    Otarola, Enrique
    Salgado, Abner J.
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2018, 21 (05) : 1262 - 1293
  • [38] Approximate Controllability from the Exterior of Space-Time Fractional Wave Equations
    Carole Louis-Rose
    Mahamadi Warma
    Applied Mathematics & Optimization, 2021, 83 : 207 - 250
  • [39] The Lifespan of Smooth Solutions to Semilinear Wave Equations in Schwarzschild Space-Time
    Lou, Qiong
    Luo, Shaoying
    JOURNAL OF PARTIAL DIFFERENTIAL EQUATIONS, 2023, 36 (04): : 404 - 413
  • [40] Approximate Controllability from the Exterior of Space-Time Fractional Wave Equations
    Louis-Rose, Carole
    Warma, Mahamadi
    APPLIED MATHEMATICS AND OPTIMIZATION, 2021, 83 (01): : 207 - 250