Nonadiabatic Josephson current pumping by chiral microwave irradiation

被引:12
|
作者
Venitucci, B. [1 ,2 ,5 ,6 ]
Feinberg, D. [1 ,2 ]
Melin, R. [1 ,2 ]
Doucot, B. [3 ,4 ]
机构
[1] CNRS, Inst NEEL, F-38042 Grenoble 9, France
[2] Univ Grenoble Alpes, Inst NEEL, F-38042 Grenoble 9, France
[3] Univ Paris 06, CNRS, Lab Phys Theor & Hautes Energies, UMR 7589, 4 Pl Jussieu, F-75252 Paris 5, France
[4] Univ Paris 07, CNRS, Lab Phys Theor & Hautes Energies, UMR 7589, 4 Pl Jussieu, F-75252 Paris 5, France
[5] Univ Grenoble Alpes, F-38000 Grenoble, France
[6] Commissariat Energie Atom, INAC MEM, F-38000 Grenoble, France
关键词
SUPERCONDUCTING QUANTUM POINT; CARBON NANOTUBES; TRANSPORT;
D O I
10.1103/PhysRevB.97.195423
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Irradiating a Josephson junction with microwaves can operate not only on the amplitude but also on the phase of the Josephson current. This requires breaking time-inversion symmetry, which is achieved by introducing a phase lapse between the microwave components acting on the two sides of the junction. General symmetry arguments and the solution of a specific single-level quantum dot model show that this induces chirality in the Cooper parr dynamics due to the topology of the Andreev bound-state wave function. Another essential condition is to break electron-hole symmetry within the junction. A shift of the current-phase relation is obtained, which is controllable in sign and amplitude with the microwave phase and an electrostatic gate, thus producing a "chiral" Josephson transistor. The dot model is solved in the infinite-gap limit by Floquet theory and in the general case with Keldysh nonequilibrium Green's functions. The chiral current is nonadiabatic: it is extremal and changes sign close to resonant chiral transitions between the Andreev bound states.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Thouless pumping in Josephson junction arrays
    Athanasiou, Stavros
    Nielsen, Ida Egholm
    Wauters, Matteo M.
    Burrello, Michele
    SCIPOST PHYSICS, 2024, 16 (03):
  • [32] Nonadiabatic dynamics in strongly driven diffusive Josephson junctions
    Basset, J.
    Kuzmanovic, M.
    Virtanen, P.
    Heikkila, T. T.
    Esteve, J.
    Gabelli, J.
    Strunk, C.
    Aprili, M.
    PHYSICAL REVIEW RESEARCH, 2019, 1 (03):
  • [33] Adiabatic quantum pumping at the josephson frequency
    Russo, S.
    Tobiska, J.
    Klapwijk, T. M.
    Morpurgo, A. F.
    PHYSICAL REVIEW LETTERS, 2007, 99 (08)
  • [34] Nonadiabatic Josephson dynamics in junctions with in-gap quasiparticles
    Michelsen, J.
    Shumeiko, V. S.
    LOW TEMPERATURE PHYSICS, 2010, 36 (10-11) : 925 - 932
  • [35] CHARGE TRANSPORT UNDER MICROWAVE IRRADIATION IN JOSEPHSON HETEROSTRUCRURES SUPERCONDUCTOR - DOPED SEMICONDUCTOR - SUPERCONDUCTOR
    Shaternik, V.
    Shapovalov, A.
    Suvorov, A.
    Doering, S.
    Schmidt, S.
    Seidel, P.
    2013 INTERNATIONAL KHARKOV SYMPOSIUM ON PHYSICS AND ENGINEERING OF MICROWAVES, MILLIMETER AND SUBMILLIMETER WAVES (MSMW), 2013, : 655 - 657
  • [36] EXPERIMENTAL-STUDY ON STACKED JOSEPHSON TUNNEL JUNCTION ARRAYS UNDER MICROWAVE IRRADIATION
    KLUSHIN, AM
    KOHLSTEDT, H
    JOURNAL OF APPLIED PHYSICS, 1995, 77 (01) : 441 - 443
  • [37] MICROWAVE IRRADIATION STIMULATED SUPERCONDUCTIVITY AND JOSEPHSON EFFECT IN CROSS-LIKE FILM STRUCTURES
    BEVZA, YG
    KARAMUSHKO, VI
    DMITRENKO, IM
    JOURNAL DE PHYSIQUE LETTRES, 1979, 40 (05): : L101 - L104
  • [38] Nonadiabatic nonlinear non-Hermitian quantized pumping
    Ezawa, Motohiko
    Ishida, Natsuko
    Ota, Yasutomo
    Iwamoto, Satoshi
    PHYSICAL REVIEW RESEARCH, 2024, 6 (03):
  • [39] Nonadiabatic electron pumping through interacting quantum dots
    Croy, Alexander
    Saalmann, Ulf
    Hernandez, Alexis R.
    Lewenkopf, Caio H.
    PHYSICAL REVIEW B, 2012, 85 (03)
  • [40] Single-parameter nonadiabatic quantized charge pumping
    Kaestner, B.
    Kashcheyevs, V.
    Amakawa, S.
    Blumenthal, M. D.
    Li, L.
    Janssen, T. J. B. M.
    Hein, G.
    Pierz, K.
    Weimann, T.
    Siegner, U.
    Schumacher, H. W.
    PHYSICAL REVIEW B, 2008, 77 (15):