GENERALIZED STOCHASTIC GRADIENT LEARNING

被引:31
|
作者
Evans, George W.
Honkapohja, Seppo
Williams, Noah [1 ]
机构
[1] Univ Wisconsin, Dept Econ, Madison, WI 53706 USA
基金
英国经济与社会研究理事会;
关键词
MONETARY-POLICY; NASH INFLATION; STABILITY; EXPECTATIONS; CONVERGENCE; FRAMEWORK; BELIEFS; RULES; MODEL;
D O I
10.1111/j.1468-2354.2009.00578.x
中图分类号
F [经济];
学科分类号
02 ;
摘要
We study the properties of the generalized stochastic gradient (GSG) learning in forward-looking models. GSG algorithms are a natural and convenient way to model learning when agents allow for parameter drift or robustness to parameter uncertainty in their beliefs. The conditions for convergence of GSG learning to a rational expectations equilibrium are distinct from but related to the well-known stability conditions for least squares learning.
引用
收藏
页码:237 / 262
页数:26
相关论文
共 50 条
  • [21] Stochastic gradient coding for straggler mitigation in distributed learning
    Bitar R.
    Wootters M.
    El Rouayheb S.
    IEEE Journal on Selected Areas in Information Theory, 2020, 1 (01): : 277 - 291
  • [22] Fast Stochastic Kalman Gradient Descent for Reinforcement Learning
    Totaro, Simone
    Jonsson, Anders
    LEARNING FOR DYNAMICS AND CONTROL, VOL 144, 2021, 144
  • [23] Stochastic Gradient Descent and Its Variants in Machine Learning
    Netrapalli, Praneeth
    JOURNAL OF THE INDIAN INSTITUTE OF SCIENCE, 2019, 99 (02) : 201 - 213
  • [24] Stochastic Gradient Descent with Polyak’s Learning Rate
    Mariana Prazeres
    Adam M. Oberman
    Journal of Scientific Computing, 2021, 89
  • [25] Stochastic Gradient Descent and Its Variants in Machine Learning
    Praneeth Netrapalli
    Journal of the Indian Institute of Science, 2019, 99 : 201 - 213
  • [26] A Robust Adaptive Stochastic Gradient Method for Deep Learning
    Gulcehre, Caglar
    Sotelo, Jose
    Moczulski, Marcin
    Bengio, Yoshua
    2017 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2017, : 125 - 132
  • [27] Learning Stochastic Optimal Policies via Gradient Descent
    Massaroli, Stefano
    Poli, Michael
    Peluchetti, Stefano
    Park, Jinkyoo
    Yamashita, Atsushi
    Asama, Hajime
    IEEE CONTROL SYSTEMS LETTERS, 2022, 6 : 1094 - 1099
  • [28] Statistical Learning and Inverse Problems: A Stochastic Gradient Approach
    Fonseca, Yuri R.
    Saporito, Yuri F.
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35, NEURIPS 2022, 2022,
  • [29] Multikernel Passive Stochastic Gradient Algorithms and Transfer Learning
    Krishnamurthy, Vikram
    Yin, George
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2022, 67 (04) : 1792 - 1805
  • [30] A Hybrid Stochastic Policy Gradient Algorithm for Reinforcement Learning
    Pham, Nhan H.
    Nguyen, Ylam M.
    Phan, Ydzung T.
    Zphuong Ha Nguyen
    van Dijk, Zxmarten
    Tran-Dinh, Quoc
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 108, 2020, 108 : 374 - 384