Frequency domain identification of the fractional Kelvin-Voigt's parameters for viscoelastic materials

被引:20
|
作者
Shabani, Majid [1 ]
Jahani, Kamal [1 ]
Di Paola, Mario [2 ]
Sadeghi, Morteza Homayoun [1 ]
机构
[1] Univ Tabriz, Fac Mech Engn, Mech Engn Dept, 29 Bahman Blvd, Tabriz, Iran
[2] Univ Palermo, Dipartimento Ingn Civile Ambientale Aerosp Mat DI, Viale Sci, I-90128 Palermo, Italy
关键词
Frequency domain; Fractional Kelvin-Voigt; Viscoelasticity; Silicon gel; Identification; FINITE DEFORMATION; DERIVATIVE MODELS; CALCULUS; FORMULATION; BEHAVIOR; TIME;
D O I
10.1016/j.mechmat.2019.103099
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this work, a new innovative method is used to identify the parameters of fractional Kelvin-Voigt constitutive equation. These parameters are: the order of fractional derivation operator, 0 <= alpha <= 1, the coefficient of fractional derivation operator, C-V, and the stiffness of the model, K-V. A particular dynamic test setup is developed to capture the experimental data. Its outputs are time histories of the excitation and excited accelerations. The investigated specimen is a polymeric cubic silicone gel material known as alpha-gel. Two kinds of experimental excitations are used as random frequencies and constant frequency harmonic excitations. In this study, experimental frequency response functions confirm that increasing the static preload changes the behavior of the investigated viscoelastic material and the fractional Kelvin-Voigt model loses its validity by increasing the precompression. It is shown that, for a random frequencies excitation, by transforming from the time domain to the frequency domain the mentioned parameters can be identified. Using the identified parameters, analytical frequency response functions are so close to their experimental counterparts. Also, analytically produced time histories of the test setup's output for steady-state experimental tests are so close to the captured time histories. The mentioned results validate the procedure of identification.
引用
收藏
页数:12
相关论文
共 50 条
  • [42] Fractional Generalizations of Maxwell and Kelvin-Voigt Models for Biopolymer Characterization
    Jozwiak, Bertrand
    Orczykowska, Magdalena
    Dziubinski, Marek
    PLOS ONE, 2015, 10 (11):
  • [43] BACKWARD EULER SCHEMES FOR THE KELVIN-VOIGT VISCOELASTIC FLUID FLOW MODEL
    Pany, Ambit K.
    Paikray, Susanta K.
    Padhy, Sudarsan
    Pani, Amiya K.
    INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2017, 14 (01) : 126 - 151
  • [44] Existence and uniqueness for a viscoelastic Kelvin-Voigt model with nonconvex stored energy
    Koumatos, Konstantinos
    Lattanzio, Corrado
    Spirito, Stefano
    Tzavaras, Athanasios E.
    JOURNAL OF HYPERBOLIC DIFFERENTIAL EQUATIONS, 2023, 20 (02) : 433 - 474
  • [45] Rayleigh Surface Waves on a Kelvin-Voigt Viscoelastic Half-Space
    Chirita, Stan
    Ciarletta, Michele
    Tibullo, Vincenzo
    JOURNAL OF ELASTICITY, 2014, 115 (01) : 61 - 76
  • [46] The viscoelastic paradox in a nonlinear Kelvin-Voigt type model of dynamic fracture
    Caponi, Maicol
    Carbotti, Alessandro
    Sapio, Francesco
    JOURNAL OF EVOLUTION EQUATIONS, 2024, 24 (03)
  • [47] General decay of solutions for a viscoelastic porous system with Kelvin-Voigt damping
    Makheloufi, Hocine
    Apalara, Tijani A.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 538 (01)
  • [48] Lack of exponential stability to Timoshenko system with viscoelastic Kelvin-Voigt type
    Malacarne, Andreia
    Munoz Rivera, Jaime Edilberto
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2016, 67 (03):
  • [49] Rayleigh Surface Waves on a Kelvin-Voigt Viscoelastic Half-Space
    Stan Chiriţă
    Michele Ciarletta
    Vincenzo Tibullo
    Journal of Elasticity, 2014, 115 : 61 - 76
  • [50] Vibration analysis of pipes conveying fluid resting on a fractional Kelvin-Voigt viscoelastic foundation with general boundary conditions
    Askarian, A. R.
    Permoon, M. R.
    Shakouri, M.
    INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2020, 179