Graph Convolutional Subspace Clustering: A Robust Subspace Clustering Framework for Hyperspectral Image

被引:77
|
作者
Cai, Yaoming [1 ]
Zhang, Zijia [1 ]
Cai, Zhihua [1 ]
Liu, Xiaobo [2 ,3 ]
Jiang, Xinwei [1 ]
Yan, Qin [1 ]
机构
[1] China Univ Geosci, Sch Comp Sci, Wuhan 430074, Peoples R China
[2] China Univ Geosci, Sch Automat, Wuhan 430074, Peoples R China
[3] China Univ Geosci, Hubei Key Lab Adv Control & Intelligent Automat C, Wuhan 430074, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Graph convolutional networks (GCNs); hyperspectral image (HSI) clustering; kernel method; subspace clustering; BAND SELECTION; CLASSIFICATION;
D O I
10.1109/TGRS.2020.3018135
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Hyperspectral image (HSI) clustering is a challenging task due to the high complexity of HSI data. Subspace clustering has been proven to be powerful for exploiting the intrinsic relationship between data points. Despite the impressive performance in the HSI clustering, traditional subspace clustering methods often ignore the inherent structural information among data. In this article, we revisit the subspace clustering with graph convolution and present a novel subspace clustering framework called graph convolutional subspace clustering (GCSC) for robust HSI clustering. Specifically, the framework recasts the self-expressiveness property of the data into the non-Euclidean domain, which results in a more robust graph embedding dictionary. We show that traditional subspace clustering models are the special forms of our framework with the Euclidean data. On the basis of the framework, we further propose two novel subspace clustering models by using the Frobenius norm, namely efficient GCSC (EGCSC) and efficient kernel GCSC (EKGCSC). Each model has a globally optimal closed-form solution, making it easier to implement, train, and apply in practice. Extensive experiments strongly evidence that EGCSC and EKGCSC dramatically outperform current models on three popular HSI data sets consistently.
引用
收藏
页码:4191 / 4202
页数:12
相关论文
共 50 条
  • [21] GLASS: A Graph Laplacian Autoencoder with Subspace Clustering Regularization for Graph Clustering
    Dengdi Sun
    Liang Liu
    Bin Luo
    Zhuanlian Ding
    Cognitive Computation, 2023, 15 : 803 - 821
  • [22] A Sparse Framework for Robust Possibilistic K-Subspace Clustering
    Zeng, Shan
    Duan, Xiangjun
    Li, Hao
    Bai, Jun
    Tang, Yuanyan
    Wang, Zhiyong
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2023, 31 (04) : 1124 - 1138
  • [23] GLASS: A Graph Laplacian Autoencoder with Subspace Clustering Regularization for Graph Clustering
    Sun, Dengdi
    Liu, Liang
    Luo, Bin
    Ding, Zhuanlian
    COGNITIVE COMPUTATION, 2023, 15 (03) : 803 - 821
  • [24] Robust Subspace Clustering for Radar Detection
    Breloy, A.
    El Korso, M. N.
    Panahi, A.
    Krim, H.
    2018 26TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2018, : 1602 - 1606
  • [25] Robust Subspace Clustering With Compressed Data
    Liu, Guangcan
    Zhang, Zhao
    Liu, Qingshan
    Xiong, Hongkai
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2019, 28 (10) : 5161 - 5170
  • [26] Duet Robust Deep Subspace Clustering
    Jiang, Yangbangyan
    Xu, Qianqian
    Yang, Zhiyong
    Cao, Xiaochun
    Huang, Qingming
    PROCEEDINGS OF THE 27TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA (MM'19), 2019, : 1596 - 1604
  • [27] Convolution-augmented transformer network for hyperspectral image subspace clustering
    Zhongbiao Zhang
    Huajun Wang
    Shujun Liu
    Jiaxin Chen
    Zhongyu Zhang
    Sen Wang
    Earth Science Informatics, 2023, 16 : 2439 - 2453
  • [28] Robust Subspace Clustering With Complex Noise
    He, Ran
    Zhang, Yingya
    Sun, Zhenan
    Yin, Qiyue
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2015, 24 (11) : 4001 - 4013
  • [29] Robust subspace clustering for radar detection
    Laboratoire Energetique Mecanique and Electromagnetisme University Paris Nanterre, Nanterre, France
    不详
    NC, United States
    European Signal Proces. Conf., 2219, (1602-1606):
  • [30] Robust Subspace Clustering via Thresholding
    Heckel, Reinhard
    Boelcskei, Helmut
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2015, 61 (11) : 6320 - 6342