Robust deflated canonical correlation analysis via feature factoring for multi-view image classification

被引:2
|
作者
Hui, Kai-fa [1 ]
Ganaa, Ernest Domanaanmwi [1 ]
Zhan, Yong-zhao [1 ,2 ]
Shen, Xiang-jun [1 ]
机构
[1] Jiangsu Univ, Sch Comp Sci & Commun Engn, Zhenjiang, Jiangsu, Peoples R China
[2] Jiangsu Engn Res Ctr Big Data Ubiquitous Percept, Zhenjiang, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
CCA; Matrix approximation; Dimension reduction; Multi-view; Noise suppression; Image classification; FEATURE-SELECTION; REDUCTION; FUSION; SYSTEM;
D O I
10.1007/s11042-021-10736-z
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Canonical Correlation Analysis (CCA) and its kernel versions (KCCA) are well-known techniques adopted in feature representation and classification for images. However, their performances are significantly affected when the images are noisy and in multiple views. In this paper, the method of robust deflated canonical correlation analysis via feature factoring for multi-view image classification is proposed. In this method, a feature factoring matrix is introduced to measure proximities between each feature vector in the dimension and projection vector, through this we evaluate the contribution of each feature to the whole feature space. Therefore, we can assign specific weights to different features accordingly to suppress the noisy data. As images are captured in multi-view usually, we also propose a deflated CCA method to build multiple factoring matrices with respect to multiple projection vectors. In this way, we weigh the degree of importance of each feature in each projection respectively to get a better feature representation for multi-view images. Experimental results on several datasets such as ORL, COIL and USPS, demonstrate that our method can improve classification performance compared to other state-of-the-art CCA methods.
引用
收藏
页码:24843 / 24865
页数:23
相关论文
共 50 条
  • [21] Symmetrical robust canonical correlation analysis for image classification
    Wang, Wenjing
    Lu, Yuwu
    Lai, Zhihui
    AATCC Journal of Research, 2021, 8 (Special Issue 1) : 54 - 61
  • [22] Robust Multi-View Feature Selection
    Liu, Hongfu
    Mao, Haiyi
    Fu, Yun
    2016 IEEE 16TH INTERNATIONAL CONFERENCE ON DATA MINING (ICDM), 2016, : 281 - 290
  • [23] Discriminative Deep Canonical Correlation Analysis for Multi-View Data
    Kumar, Debamita
    Maji, Pradipta
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2023, 35 (10) : 1 - 13
  • [24] Tensor Canonical Correlation Analysis for Multi-view Dimension Reduction
    Luo, Yong
    Tao, Dacheng
    Ramamohanarao, Kotagiri
    Xu, Chao
    Wen, Yonggang
    2016 32ND IEEE INTERNATIONAL CONFERENCE ON DATA ENGINEERING (ICDE), 2016, : 1460 - 1461
  • [25] Tensor Canonical Correlation Analysis for Multi-View Dimension Reduction
    Luo, Yong
    Tao, Dacheng
    Ramamohanarao, Kotagiri
    Xu, Chao
    Wen, Yonggang
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2015, 27 (11) : 3111 - 3124
  • [26] FEATURE INTEGRATION VIA GEOMETRICAL SUPERVISED MULTI-VIEW MULTI-LABEL CANONICAL CORRELATION FOR INCOMPLETE LABEL ASSIGNMENT
    Maeda, Keisuke
    Takahashi, Sho
    Ogawa, Takahiro
    Haseyama, Miki
    2020 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2020, : 46 - 50
  • [27] Self-balanced multi-view orthogonality correlation analysis for image feature learning
    Su, Shuzhi
    Fang, Xianjin
    Yang, Gaoming
    Ge, Bin
    Zhu, Yanmin
    INFRARED PHYSICS & TECHNOLOGY, 2019, 100 : 44 - 51
  • [28] Multi-view Multi-task Feature Extraction for Web Image Classification
    Zuo, Zhiqiang
    Luo, Yong
    Tao, Dacheng
    Xu, Chao
    PROCEEDINGS OF THE 2014 ACM CONFERENCE ON MULTIMEDIA (MM'14), 2014, : 1137 - 1140
  • [29] Multi-view feature learning for VHR remote sensing image classification
    Guo, Yiyou
    Ji, Jinsheng
    Shi, Dan
    Ye, Qiankun
    Xie, Huan
    MULTIMEDIA TOOLS AND APPLICATIONS, 2021, 80 (15) : 23009 - 23021
  • [30] Multi-view feature learning for VHR remote sensing image classification
    Yiyou Guo
    Jinsheng Ji
    Dan Shi
    Qiankun Ye
    Huan Xie
    Multimedia Tools and Applications, 2021, 80 : 23009 - 23021