Porous spinel-type (Al0.2CoCrFeMnNi)0.58O4-δ high-entropy oxide as a novel high-performance anode material for lithium-ion batteries

被引:74
|
作者
Xiang, Hou-Zheng [1 ,2 ]
Xie, Hong-Xiang [1 ,2 ]
Chen, Yu-Xue [1 ,2 ]
Zhang, Hui [1 ,2 ]
Mao, Aiqin [1 ,2 ,3 ]
Zheng, Cui-Hong [1 ,2 ]
机构
[1] Anhui Univ Technol, Key Lab Green Fabricat & Surface Technol Adv Met, Minist Educ, Maanshan 243032, Peoples R China
[2] Sch Mat Sci & Engn, Maanshan 243032, Peoples R China
[3] Anhui Univ Technol, Key Lab Met Emiss Reduct & Resources Recycling, Minist Educ, 59 Hudong Rd, Maanshan 243002, Anhui, Peoples R China
基金
中国国家自然科学基金;
关键词
ELECTROCHEMICAL PERFORMANCE; COMBUSTION SYNTHESIS; CYCLING PERFORMANCE; ELECTRODE MATERIALS; CATHODE MATERIALS; STORAGE; MN; FE; AL; STABILITY;
D O I
10.1007/s10853-021-05805-5
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Owing to their entropy stabilization and multi-principal effect, transition-metal-based high-entropy oxides are attracting extensive attention as an effective family of anode materials for lithium ion batteries (LIBs). Herein, spinel-type (Al0.2CoCrFeMnNi)(0.58)O4-delta HEO nanocrystalline powder with high concentration of oxygen vacancies is successfully prepared by the method of solution combustion synthesis (SCS), and explored as a novel anode active material for LIBs. As compared to (CoCrFeMnNi)(0.6)O4-delta, the inactive Al3+-doped (Al0.2CoCrFeMnNi)(0.58)O4-delta anode provides more than twice the reversible specific capacity of 554 mAh g(-1) after 500 cycles at a specific current of 200 mA g(-1), accompanied with good rate capability (634 mAh g(-1) even at 3 A g(-1)) and cycling performance. The enhanced electrochemical properties can be attributed to that inactive Al3+-doping resulted into the more space for Li+ intercalation and deintercalation, enhanced structural stability, and the improved electronic conductivity and Li+ diffusivity. [GRAPHICS] .
引用
收藏
页码:8127 / 8142
页数:16
相关论文
共 50 条
  • [21] New spinel high-entropy oxides (FeCoNiCrMnXLi)3O4 (X = Cu, Mg, Zn) as the anode material for lithium-ion batteries
    Duan, ChanQin
    Tian, Kanghui
    Li, Xinglong
    Wang, Dan
    Sun, Hongyu
    Zheng, Runguo
    Wang, Zhiyuan
    Liu, Yanguo
    CERAMICS INTERNATIONAL, 2021, 47 (22) : 32025 - 32032
  • [22] Novel nitrogen-rich porous carbon spheres as a high-performance anode material for lithium-ion batteries
    Li, Dongdong
    Ding, Liang-Xin
    Chen, Hongbin
    Wang, Suqing
    Li, Zhong
    Zhu, Min
    Wang, Haihui
    JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (39) : 16617 - 16622
  • [23] Fabricating hierarchical porous ZnCo2O4 microspheres as high-performance anode material for lithium-ion batteries
    Wang, Duo
    Qi, Xiaojiao
    Gao, Haiyan
    Yu, Jianguo
    Zhao, Yongnan
    Zhou, Guotai
    Li, Guodong
    MATERIALS LETTERS, 2016, 164 : 93 - 96
  • [24] Porous MoO3 Film as a High-Performance Anode Material for Lithium-Ion Batteries
    Yu, Xiaoyou
    Wang, Li
    Liu, Junfeng
    Sun, Xiaoming
    CHEMELECTROCHEM, 2014, 1 (09): : 1476 - 1479
  • [25] Lithium gallium oxide (LiGaO2): High-performance anode material for lithium-ion batteries
    Ma, Fukun
    Guan, Shengjing
    Wang, Yan-Jie
    Liu, Zhimeng
    Li, Wenfang
    JOURNAL OF ALLOYS AND COMPOUNDS, 2024, 976
  • [26] Fe3O4 wrapped by reduced graphene oxide as a high-performance anode material for lithium-ion batteries
    Bengono, D. A. Mifounde
    Zhang, Bao
    Yao, Yingying
    Tang, Linbo
    Yu, Wanjing
    Zheng, Junchao
    Chu, Dewei
    Li, Jiayi
    Tong, Hui
    IONICS, 2020, 26 (04) : 1695 - 1701
  • [27] Fe3O4 wrapped by reduced graphene oxide as a high-performance anode material for lithium-ion batteries
    D. A. Mifounde Bengono
    Bao Zhang
    Yingying Yao
    Linbo Tang
    Wanjing Yu
    Junchao Zheng
    Dewei Chu
    Jiayi Li
    Hui Tong
    Ionics, 2020, 26 : 1695 - 1701
  • [28] Hierarchical Porous ZnMn2O4 Microspheres as a High-Performance Anode for Lithium-Ion Batteries
    Fan, Binbin
    Hu, Aiping
    Chen, Xiaohua
    Zhang, Shiying
    Tang, Qunli
    Wang, Jiande
    Deng, Weina
    Liu, Zheng
    Xiao, Kuikui
    ELECTROCHIMICA ACTA, 2016, 213 : 37 - 45
  • [29] High entropy spinel metal oxide (CoCrFeMnNi)3O4 nanoparticles as a high-performance supercapacitor electrode material
    Talluri, Bhusankar
    Aparna, M. L.
    Sreenivasulu, N.
    Bhattacharya, S. S.
    Thomas, Tiju
    JOURNAL OF ENERGY STORAGE, 2021, 42 (42):
  • [30] MnCr2O4/graphene composite as a high-performance anode material for lithium-ion batteries
    Babu, G. N. Suresh
    Kalaiselvi, N.
    ELECTROCHIMICA ACTA, 2021, 372