Lithium-ion battery state-of-health estimation in electric vehicle using optimized partial charging voltage profiles

被引:68
|
作者
Meng, Jinhao [1 ]
Cai, Lei [2 ,3 ]
Stroe, Daniel-Ioan [4 ]
Luo, Guangzhao [1 ]
Sui, Xin [4 ]
Teodorescu, Remus [4 ]
机构
[1] Northwestern Polytech Univ, Sch Automat, Xian 710072, Shaanxi, Peoples R China
[2] Xian Univ Technol, Fac Comp Sci & Engn, Xian 710048, Shaanxi, Peoples R China
[3] Shaanxi Key Lab Network Comp & Secur Technol, Xian 710048, Shaanxi, Peoples R China
[4] Aalborg Univ, Dept Energy Technol, DK-9220 Aalborg, Denmark
关键词
State of health estimation; Partial voltage range; Lithium-ion battery; Electric vehicle; Non-dominated sorting genetic algorithm; REMAINING USEFUL LIFE; ONLINE ESTIMATION; CAPACITY ESTIMATION; KALMAN FILTER; DEGRADATION; MANAGEMENT; SYSTEM; MODEL; WIND;
D O I
10.1016/j.energy.2019.07.127
中图分类号
O414.1 [热力学];
学科分类号
摘要
Lithium-ion (Li-ion) batteries have become the dominant choice for powering the Electric Vehicles (EVs). In order to guarantee the safety and reliability of the battery pack in an EV, the Battery Management System (BMS) needs information regarding the battery State of Health (SOH). This paper estimates the battery SOH from the optimal partial charging voltage profiles, which is a straightforward and effective solution for the EV applications. In order to further improve the accuracy and efficiency of the SOH estimation, a novel method optimizing single and multiple voltage ranges during the EV charging process is proposed in this paper. Non-dominated Sorting Genetic Algorithm II (NSGA-II) is applied to automatically select the optimal multiple voltage ranges, while the grid search technique is used to find the optimal single voltage range. The non-dominated solutions from NSGA-II enable the SOH estimation at different battery charging stages, which gives more freedom to the implementation of the proposed method. Three Nickel Manganese Cobalt (NMC)-based batteries from EV, which have been aged under calendar ageing for 360 days, are used to validate the proposed method. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1054 / 1062
页数:9
相关论文
共 50 条
  • [31] State-of-health estimation for lithium-ion batteries using relaxation voltage under dynamic conditions
    Ke, Xue
    Hong, Huawei
    Zheng, Peng
    Zhang, Shuling
    Zhu, Lingling
    Li, Zhicheng
    Cai, Jiaxin
    Fan, Peixiao
    Yang, Jun
    Wang, Jun
    Li, Li
    Kuai, Chunguang
    Guo, Yuzheng
    JOURNAL OF ENERGY STORAGE, 2024, 100
  • [32] Improving state-of-health estimation for lithium-ion batteries via unlabeled charging data
    Lin, Chuanping
    Xu, Jun
    Mei, Xuesong
    ENERGY STORAGE MATERIALS, 2023, 54 : 85 - 97
  • [33] State-of-health (SOH) evaluation on lithium-ion battery by simulating the voltage relaxation curves
    Qian, Kun
    Huang, Binhua
    Ran, Aihua
    He, Yan-Bing
    Li, Baohua
    Kang, Feiyu
    ELECTROCHIMICA ACTA, 2019, 303 : 183 - 191
  • [34] State of Health Estimation for Lithium-Ion Battery via Recursive Feature Elimination on Partial Charging Curves
    Wu, Ji
    Su, Hao
    Meng, Jinhao
    Lin, Mingqiang
    IEEE JOURNAL OF EMERGING AND SELECTED TOPICS IN POWER ELECTRONICS, 2023, 11 (01) : 131 - 142
  • [35] Deep learning and polarization equilibrium based state of health estimation for lithium-ion battery using partial charging data
    Wang, Tong
    Wu, Yan
    Zhu, Keming
    Cen, Jianmeng
    Wang, Shaohong
    Huang, Yuqi
    ENERGY, 2025, 317
  • [36] State-of-health estimation of lithium-ion battery packs in electric vehicles based on genetic resampling particle filter
    Bi, Jun
    Zhang, Ting
    Yu, Haiyang
    Kang, Yanqiong
    APPLIED ENERGY, 2016, 182 : 558 - 568
  • [37] State-of-Charge and State-of-Health variable-gain estimation based on tracking sliding mode differentiators for an electric vehicle Lithium-ion battery
    Fornaro, Pedro
    Puleston, Paul
    Battaiotto, Pedro
    JOURNAL OF ENERGY STORAGE, 2023, 65
  • [38] Joint Estimation of State-of-Health and State-of-Charge for Lithium-Ion Battery Based on Electrochemical Model Optimized by Neural Network
    Sun, Xiaodong
    Chen, Qi
    Zheng, Linfeng
    Yang, Jufeng
    IEEE Journal of Emerging and Selected Topics in Industrial Electronics, 2023, 4 (01): : 168 - 177
  • [39] Critical summary and perspectives on state-of-health of lithium-ion battery
    Yang, Bo
    Qian, Yucun
    Li, Qiang
    Chen, Qian
    Wu, Jiyang
    Luo, Enbo
    Xie, Rui
    Zheng, Ruyi
    Yan, Yunfeng
    Su, Shi
    Wang, Jingbo
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2024, 190
  • [40] A New Hybrid Neural Network Method for State-of-Health Estimation of Lithium-Ion Battery
    Bao, Zhengyi
    Jiang, Jiahao
    Zhu, Chunxiang
    Gao, Mingyu
    ENERGIES, 2022, 15 (12)