Evaluation of graphene optical nonlinearity with photon-pair generation in graphene-on-silicon waveguides

被引:7
|
作者
Yonezu, Yuya [1 ,2 ]
Kou, Rai [3 ,4 ,5 ]
Nishi, Hidetaka [3 ,4 ]
Tsuchizawa, Tai [3 ,4 ]
Yamada, Koji [3 ,4 ,5 ]
Aoki, Takao [2 ]
Ishizawa, Atsushi [1 ]
Matsuda, Nobuyuki [1 ,4 ,6 ]
机构
[1] NTT Corp, NTT Basic Res Labs, Atsugi, Kanagawa 2430198, Japan
[2] Waseda Univ, Dept Appl Phys, Shinjuku Ku, Tokyo 1698555, Japan
[3] NTT Corp, NTT Device Technol Labs, Atsugi, Kanagawa 2430198, Japan
[4] NTT Corp, NTT Nanophoton Ctr, Atsugi, Kanagawa 2430198, Japan
[5] Natl Inst Adv Ind Sci & Technol, Tsukuba, Ibaraki 3058569, Japan
[6] Tohoku Univ, Dept Commun Engn, Grad Sch Engn, Aoba Ku, Sendai, Miyagi 9808579, Japan
来源
OPTICS EXPRESS | 2019年 / 27卷 / 21期
基金
日本学术振兴会;
关键词
CORRELATED PHOTONS; REFRACTIVE-INDEX;
D O I
10.1364/OE.27.030262
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We evaluate the nonlinear coefficient of graphene-on-silicon waveguides through the coincidence measurement of photon-pairs generated via spontaneous four-wave mixing. We observed the temporal correlation of the photon-pairs from the waveguides over various transfer layouts of graphene sheets. A simple analysis of the experimental results using coupled-wave equations revealed that the atomically-thin graphene sheets enhanced the nonlinearity of silicon waveguides up to ten-fold. The results indicate that the purely chi((3))-based effective nonlinear refractive index of graphene is on the order of 10(-13) m(2)/W, and provide important insights for applications of graphene-based nonlinear optics in on-chip nanophotonics. (C) 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
引用
收藏
页码:30262 / 30271
页数:10
相关论文
共 50 条
  • [21] Correlated photon pair generation in silicon wire waveguides
    Cheng, Jierong
    Zhou, Qiang
    Zhang, Wei
    Huang, Yidong
    Peng, Jiangde
    PASSIVE COMPONENTS AND FIBER-BASED DEVICES VII, 2011, 7986
  • [22] Photon-pair generation in a lossy waveguide
    Shin, Woncheol
    Park, Kyungdeuk
    Kim, Hyeongpin
    Lee, Dongjin
    Kwon, Kiwon
    Shin, Heedeuk
    NANOPHOTONICS, 2023, 12 (03) : 531 - 538
  • [23] Photon-pair generation based on superconductivity
    Suemune, Ikuo
    Sasakura, Hirotaka
    Asano, Yasuhiro
    Kumano, Hidekazu
    Inoue, Ryotaro
    Tanaka, Kazunori
    Akazaki, Tatsushi
    Takayanagi, Hideaki
    IEICE ELECTRONICS EXPRESS, 2012, 9 (14): : 1184 - 1200
  • [24] Quantum delocalization in photon-pair generation
    Forbes, Kayn A.
    Ford, Jack S.
    Jones, Garth A.
    Andrews, David L.
    PHYSICAL REVIEW A, 2017, 96 (02)
  • [25] Degenerate photon-pair generation in an ultracompact silicon photonic crystal waveguide
    He, Jiakun
    Clark, Alex S.
    Collins, Matthew J.
    Li, Juntao
    Krauss, Thomas F.
    Eggleton, Benjamin J.
    Xiong, Chunle
    OPTICS LETTERS, 2014, 39 (12) : 3575 - 3578
  • [26] Optical absorption in graphene integrated on silicon waveguides
    Li, Huan
    Anugrah, Yoska
    Koester, Steven J.
    Li, Mo
    APPLIED PHYSICS LETTERS, 2012, 101 (11)
  • [27] Photon-pair generation by four-wave mixing in optical fibers
    Lin, Q
    Yaman, F
    Agrawal, GP
    OPTICS LETTERS, 2006, 31 (09) : 1286 - 1288
  • [28] Efficient photon-pair generation in layer-poled lithium niobate nanophotonic waveguides
    Shi, Xiaodong
    Mohanraj, Sakthi Sanjeev
    Dhyani, Veerendra
    Baiju, Angela Anna
    Wang, Sihao
    Sun, Jiapeng
    Zhou, Lin
    Paterova, Anna
    Leong, Victor
    Zhu, Di
    LIGHT-SCIENCE & APPLICATIONS, 2024, 13 (01)
  • [29] Strongly confined gap plasmon modes in graphene sandwiches and graphene-on-silicon
    Francescato, Yan
    Giannini, Vincenzo
    Maier, Stefan A.
    NEW JOURNAL OF PHYSICS, 2013, 15
  • [30] Photon-pair generation in lossy coupled-resonator optical waveguides via spontaneous four-wave mixing
    Dezfouli, Mohsen Kamandar
    Dignam, Marc M.
    PHYSICAL REVIEW A, 2017, 95 (03)