The equations of non-homogeneous asymmetric fluids: an iterative approach

被引:8
|
作者
Conca, C
Gormaz, R
Ortega-Torres, EE
Rojas-Medar, MA
机构
[1] Univ Chile, Dept Ingn Matemat, Fac Ciencias Fis & Matemat, Santiago, Chile
[2] Univ Chile, Dept Ingn Matemat, UMR 2071 CNRS, Santiago, Chile
[3] Univ Chile, Ctr Modelamiento Matemat, UMR 2071 CNRS, Santiago, Chile
[4] Univ Antofagasta, Dept Matemat, Antofagasta, Chile
[5] Univ Estadual Campinas, IMECC, Dept Matemat Aplicada, BR-13081970 Campinas, SP, Brazil
关键词
asymmetric fluid; Galerkin method; strong solutions;
D O I
10.1002/mma.331
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the existence and uniqueness of strong solutions for the equations of non-homogeneous asymmetric fluids. We use an iterative approach and we prove that the approximate solutions constructed by this method converge to the strong solution of these equations. We also give bounds for the rate of convergence. Copyright (C) 2002 John Wiley Sons, Ltd.
引用
收藏
页码:1251 / 1280
页数:30
相关论文
共 50 条
  • [31] On non-homogeneous equations with an infinite number of variables.
    Carmichael, RD
    AMERICAN JOURNAL OF MATHEMATICS, 1914, 36 : 13 - 20
  • [32] ON THE NON-HOMOGENEOUS BOUNDARY VALUE PROBLEM FOR SCHRODINGER EQUATIONS
    Audiard, Corentin
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2013, 33 (09) : 3861 - 3884
  • [33] The C α regularity of a class of non-homogeneous ultraparabolic equations
    Wang WenDong
    Zhang LiQun
    SCIENCE IN CHINA SERIES A-MATHEMATICS, 2009, 52 (08): : 1589 - 1606
  • [34] Direct solutions of linear non-homogeneous difference equations
    Pan, Shu-Wen
    Pan, Jia-Qiang
    ADVANCES IN DIFFERENCE EQUATIONS, 2016,
  • [35] Direct solutions of linear non-homogeneous difference equations
    Shu-Wen Pan
    Jia-Qiang Pan
    Advances in Difference Equations, 2016
  • [36] THE GROWTH OF SOLUTIONS OF NON-HOMOGENEOUS LINEAR DIFFERENTIAL EQUATIONS
    Kumar, Dinesh
    Saini, Manisha
    KODAI MATHEMATICAL JOURNAL, 2021, 44 (03) : 556 - 574
  • [37] Asymptotic behavior for non-homogeneous nonlocal dispersal equations
    Sun, Jian-Wen
    APPLIED MATHEMATICS LETTERS, 2015, 50 : 64 - 68
  • [38] Spatially non-homogeneous coagulation equations with source terms
    Shirvani, A
    Van Roessel, HJ
    QUARTERLY OF APPLIED MATHEMATICS, 2004, 62 (04) : 651 - 670
  • [39] Pointwise estimates for a class of non-homogeneous Kolmogorov equations
    Chiara Cinti
    Andrea Pascucci
    Sergio Polidoro
    Mathematische Annalen, 2008, 340 : 237 - 264
  • [40] An integrated semigroup approach for age structured equations with diffusion and non-homogeneous boundary conditions
    Arnaud Ducrot
    Pierre Magal
    Alexandre Thorel
    Nonlinear Differential Equations and Applications NoDEA, 2021, 28