The equations of non-homogeneous asymmetric fluids: an iterative approach

被引:8
|
作者
Conca, C
Gormaz, R
Ortega-Torres, EE
Rojas-Medar, MA
机构
[1] Univ Chile, Dept Ingn Matemat, Fac Ciencias Fis & Matemat, Santiago, Chile
[2] Univ Chile, Dept Ingn Matemat, UMR 2071 CNRS, Santiago, Chile
[3] Univ Chile, Ctr Modelamiento Matemat, UMR 2071 CNRS, Santiago, Chile
[4] Univ Antofagasta, Dept Matemat, Antofagasta, Chile
[5] Univ Estadual Campinas, IMECC, Dept Matemat Aplicada, BR-13081970 Campinas, SP, Brazil
关键词
asymmetric fluid; Galerkin method; strong solutions;
D O I
10.1002/mma.331
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the existence and uniqueness of strong solutions for the equations of non-homogeneous asymmetric fluids. We use an iterative approach and we prove that the approximate solutions constructed by this method converge to the strong solution of these equations. We also give bounds for the rate of convergence. Copyright (C) 2002 John Wiley Sons, Ltd.
引用
下载
收藏
页码:1251 / 1280
页数:30
相关论文
共 50 条
  • [2] Vanishing viscosity for non-homogeneous asymmetric fluids in R3
    Silva, P. Braz e
    Fernandez-Cara, E.
    Rojas-Medar, M. A.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 332 (02) : 833 - 845
  • [3] ON NON-HOMOGENEOUS VISCOUS INCOMPRESSIBLE FLUIDS
    SIMON, J
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1989, 309 (07): : 447 - 452
  • [4] NON-HOMOGENEOUS CUBIC EQUATIONS
    WATSON, GL
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 1967, 17 : 271 - &
  • [5] Non-homogeneous generalized Newtonian fluids
    Jens Frehse
    Michael Růžička
    Mathematische Zeitschrift, 2008, 260 : 355 - 375
  • [6] Non-homogeneous generalized Newtonian fluids
    Frehse, Jens
    Ruzicka, Michael
    MATHEMATISCHE ZEITSCHRIFT, 2008, 260 (02) : 355 - 375
  • [7] MOVEMENT OF FLUIDS IN NON-HOMOGENEOUS POROUS MEDIA
    UNGUREAN.E
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1969, 268 (03): : 181 - &
  • [8] MULTIPARAMETERED NON-HOMOGENEOUS NON-LINEAR EQUATIONS
    YERION, KA
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 1982, 12 (02) : 257 - 264
  • [9] Non-homogeneous updates for the iterative coordinate descent algorithm
    Yu, Zhou
    Thibault, Jean-Baptiste
    Bouman, Charles A.
    Sauer, Ken D.
    Hsieh, Jiang
    COMPUTATIONAL IMAGING V, 2007, 6498
  • [10] Optimal solutions for homogeneous and non-homogeneous equations arising in physics
    Sikander, Waseem
    Khan, Umar
    Ahmed, Naveed
    Mohyud-Din, Syed Tauseef
    RESULTS IN PHYSICS, 2017, 7 : 216 - 224