A coordinated regulation strategy to improve electronic conductivity and Li-ion transport for TiO2 lithium battery anode materials

被引:15
|
作者
Fan, Yicheng [1 ]
Chen, Xuhui [2 ]
Zhang, Kun [1 ]
Rong, Ju [2 ]
Yu, Xiaohua [2 ]
机构
[1] Southwest Jiaotong Univ, Sch Mat Sci & Engn, Minist Educ, Key Lab Adv Mat Technol, Chengdu 610031, Peoples R China
[2] Kunming Univ Sci & Technol, Fac Mat Sci & Engn, Kunming 650093, Yunnan, Peoples R China
基金
中国国家自然科学基金;
关键词
Titanium dioxide; Electronic conductivity; Li-ion diffusion; Hollow Nanospheres; Coordinated regulation strategy; ANATASE TIO2; HIGHLY EFFICIENT; NATURAL GRAPHITE; SOLAR-CELLS; STORAGE; INSERTION; NANORODS; ELECTROACTIVITY; SPECTROSCOPY; PERFORMANCE;
D O I
10.1016/j.jallcom.2020.158282
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Titanium dioxide (TiO2) is considered as one of the most promising anode materials for lithium-ion batteries. However, improving the poor electronic conductivity and slow Li-ion diffusion of TiO2 anode materials are urgently required. In this study, we design a Cu-doped TiO2 hollow nanosphere structure based on the coordinated regulation strategy of size, nanostructure and doping. The results revealed the cause of the oxygen vacancy generation and its mechanism of action in the battery electrode reaction process. Moreover, the electrochemical results showed that Cu-doped hollow nanosphere structure significantly improves the low conductivity and the slow Li-ion diffusion rate of TiO2. These findings show that our work provides a new modification idea to improve the electrochemical performance of TiO2 anode materials for LIBs. (C) 2020 Published by Elsevier B.V.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Growth and characterization of TiO2 (B)/C composite nanowire and its application as anode material in Li-ion battery
    Yang, Zunxian
    Li, Song
    Guo, Zaiping
    Guo, Tailiang
    Zhenkong Kexue yu Jishu Xuebao/Journal of Vacuum Science and Technology, 2012, 32 (06): : 533 - 538
  • [32] TiO2/MoO2 Nanocomposite as Anode Materials for High Power Li-ion Batteries with Exceptional Capacity
    Bauer, Dustin
    Roberts, Alexander J.
    Starkey, Chris L.
    Vedarajan, Raman
    Brett, Dan J. L.
    Shearing, Paul R.
    Matsumi, Noriyoshi
    Darr, Jawwad A.
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2018, 13 (05): : 5120 - 5140
  • [33] A Li3PO4 coating strategy to enhance the Li-ion transport properties of Li2ZnTi3O8 anode material for Lithium-ion Battery
    Liu, Xiaotong
    Weng, Qiang
    Liu, Tao
    Tang, Zhiyuan
    Tang, Haoqing
    ELECTROCHIMICA ACTA, 2023, 447
  • [34] Mesoporous polyaniline/TiO2 microspheres with core-shell structure as anode materials for lithium ion battery
    Lai, C.
    Zhang, H. Z.
    Li, G. R.
    Gao, X. P.
    JOURNAL OF POWER SOURCES, 2011, 196 (10) : 4735 - 4740
  • [35] Hierarchical mesoporous rutile TiO2/C composite nanospheres as lithium-ion battery anode materials
    Wang, Wan Lin
    Park, Ju-Young
    Van Hiep Nguyen
    Jin, En Mei
    Gu, Hal-Bon
    CERAMICS INTERNATIONAL, 2016, 42 (01) : 598 - 606
  • [36] Synthesis of 2D TiO2 nanocrystals for high-power lithium ion battery anode materials
    Park, Mihyun
    Hyeon, Taeghwan
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2012, 244
  • [37] Reactive diffusion of lithium in silicon in anode materials for Li-ion batteries
    Li, Bin
    Goldman, Alexander
    Xu, Jun
    MATERIALIA, 2023, 29
  • [38] Hard carbon/lithium composite anode materials for Li-ion batteries
    Sun, Hao
    He, Xiangming
    Ren, Jianguo
    Li, Jianjun
    Jiang, Changyin
    Wan, Chunrong
    ELECTROCHIMICA ACTA, 2007, 52 (13) : 4312 - 4316
  • [39] Orthorhombic Lithium Titanium Phosphate as an Anode Material for Li-ion Rechargeable Battery
    Kee, Yongho
    Dimov, Nikolay
    Minami, Keita
    Okada, Shigeto
    ELECTROCHIMICA ACTA, 2015, 174 : 516 - 520
  • [40] The local lithium plating caused by anode crack defect in Li-ion battery
    Yuan, Yuebo
    Wang, Hewu
    Han, Xuebing
    Pan, Yue
    Sun, Yukun
    Kong, Xiangdong
    Lu, Languang
    Ouyang, Minggao
    APPLIED ENERGY, 2024, 361