Metabolic analysis of S-cerevisiae strains engineered for malolactic fermentation

被引:30
|
作者
Bony, M
Bidart, F
Camarasa, C
Ansanay, V
Dulau, L
Barre, P
Dequin, S
机构
[1] LALLEMAND SA,F-31405 TOULOUSE,FRANCE
[2] IPV,LAB MICROBIOL & TECHNOL FERMENTAT,INRA,F-34060 MONTPELLIER 01,FRANCE
关键词
malate metabolism; (Saccharomyces cerevisiae); malate transport; malolactic enzyme; malolactic fermentation; enology;
D O I
10.1016/S0014-5793(97)00637-6
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
A complete malolactic fermentation was achieved using Saccharomyces cerevisiae strains coexpressing the genes mleS and mae1 coding for the Lactococcus lactis malolactic enzyme and the Schizosaccharomyces pombe malate permease under the control of yeast promoters. The expression level of mae1 greatly influences the kinetics of the reaction by controlling the rate of malate uptake meanwhile a high expression level of mleS induces a partial consumption of malate derived from glucose by the malolactic enzyme. A strain expressing several copies of mae1 and one copy of mleS degrades 3 g/l of malate almost exclusively through the malolactic pathway in 4 days under enological conditions, without metabolic side effects. (C) 1997 Federation of European Biochemical Societies.
引用
收藏
页码:452 / 456
页数:5
相关论文
共 50 条
  • [31] Chromosomal boundaries in S-cerevisiae
    Bi, X
    Broach, JR
    CURRENT OPINION IN GENETICS & DEVELOPMENT, 2001, 11 (02) : 199 - 204
  • [32] A metabolic and genomic study of engineered Saccharomyces cerevisiae strains for high glycerol production
    Cordier, Helene
    Mendes, Filipa
    Vasconcelos, Isabel
    Francois, Jean M.
    METABOLIC ENGINEERING, 2007, 9 (04) : 364 - 378
  • [33] Biogenic amine production by Oenococcus oeni during malolactic fermentation of wines obtained using different strains of Saccharomyces cerevisiae
    Rosi, Iolanda
    Nannelli, Francesca
    Giovani, Giovanna
    LWT-FOOD SCIENCE AND TECHNOLOGY, 2009, 42 (02) : 525 - 530
  • [34] Coiled coil structures and transcription:: an analysis of the S-cerevisiae coilome
    Barbara, Kellie E.
    Willis, Kristine A.
    Haley, Terry M.
    Deminoff, Stephen J.
    Santangelo, George M.
    MOLECULAR GENETICS AND GENOMICS, 2007, 278 (02) : 135 - 147
  • [35] Large scale functional analysis of the S-cerevisiae genome.
    RossMacdonald, P
    Erdman, S
    Agarwal, S
    Sheehan, A
    Malczynski, M
    Burns, N
    Roeder, GS
    Snyder, M
    MOLECULAR BIOLOGY OF THE CELL, 1996, 7 : 3625 - 3625
  • [36] GENETIC AND BIOCHEMICAL-ANALYSIS OF COB REGION IN S-CEREVISIAE
    ALEXANDER, NJ
    VINCENT, RD
    PERLMAN, PS
    GENETICS, 1978, 88 (04) : S2 - S2
  • [37] Ribozyme-Based Aminoglycoside Switches of Gene Expression Engineered by Genetic Selection in S-cerevisiae
    Klauser, Benedikt
    Atanasov, Janina
    Siewert, Lena K.
    Hartig, Joerg S.
    ACS SYNTHETIC BIOLOGY, 2015, 4 (05): : 516 - 525
  • [38] Reassessment of requirements for anaerobic xylose fermentation by engineered, non-evolved Saccharomyces cerevisiae strains
    Bracher, Jasmine M.
    Martinez-Rodriguez, Oscar A.
    Dekker, Wijb J. C.
    Verhoeven, Maarten D.
    van Maris, Antonius J. A.
    Pronk, Jack T.
    FEMS YEAST RESEARCH, 2019, 19 (01)
  • [39] Components of the bioemulsifier from S-cerevisiae
    Barriga, JAT
    Cooper, DG
    Idziak, ES
    Cameron, DR
    ENZYME AND MICROBIAL TECHNOLOGY, 1999, 25 (1-2) : 96 - 102
  • [40] LOCALIZATION OF PHOSPHATIDYLSERINE SYNTHASE IN S-CEREVISIAE
    SPERKAGOTTLIEB, C
    KOHLWEIN, SD
    FASCH, E
    PALTAUF, F
    BIOLOGICAL CHEMISTRY HOPPE-SEYLER, 1988, 369 (09): : 920 - 921