Computing the permanent modulo a prime power

被引:1
|
作者
Bjorklund, Andreas [1 ]
Husfeldt, Thore [1 ,2 ]
Lyckberg, Isak [1 ]
机构
[1] Lund Univ, Box 118, S-22100 Lund, Sweden
[2] ITU Copenhagen, Rued Langgaards Vej 7, DK-2300 Copenhagen S, Denmark
基金
瑞典研究理事会;
关键词
Algorithms; Graph algorithms; Randomized algorithms; ALGORITHM;
D O I
10.1016/j.ipl.2017.04.015
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We show how to compute the permanent of an n x n integer matrix modulo p(k) in time n(k+ O(1)) if p = 2 and in time 2(n)/exp{Omega(gamma(2)n/p logp)} if p is an odd prime with kp < n, where gamma = 1-kp/n. Our algorithms are based on Ryser's formula, a randomized algorithm of Bax and Franklin, and exponential-space tabulation. Using the Chinese remainder theorem, we conclude that for each delta > 0 we can compute the permanent of an n x n integer matrix in time 2n/ exp{Omega(delta(2)n/beta(1/(1-delta)) log beta)}, provided there exists a real number beta such that vertical bar per A vertical bar <= beta(n) and beta <= (1/44 delta n)(1-delta) (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:20 / 25
页数:6
相关论文
共 50 条
  • [41] SUMS OF SUBSEQUENCES MODULO PRIME POWERS
    ALON, N
    [J]. DISCRETE MATHEMATICS, 1988, 71 (01) : 87 - 88
  • [42] Counting Homomorphisms to Trees Modulo a Prime
    Goebel, Andreas
    Lagodzinski, J. A. Gregor
    Seidel, Karen
    [J]. ACM TRANSACTIONS ON COMPUTATION THEORY, 2021, 13 (03)
  • [43] Fibonacci and Lucas Products Modulo A Prime
    Seibert, Jaroslav
    Bruckman, Paul S.
    Greubel, G. C.
    Roelants, Herman
    [J]. FIBONACCI QUARTERLY, 2008, 46-47 (01): : 88 - 88
  • [44] PRODUCT WITH COUNTER MODULO A PRIME NUMBER
    PELADEAU, P
    [J]. RAIRO-INFORMATIQUE THEORIQUE ET APPLICATIONS-THEORETICAL INFORMATICS AND APPLICATIONS, 1992, 26 (06): : 553 - 564
  • [45] Cameron-Erdos modulo a prime
    Lev, VF
    Schoen, T
    [J]. FINITE FIELDS AND THEIR APPLICATIONS, 2002, 8 (01) : 108 - 119
  • [46] POINCARE ALGEBRAS MODULO AN ODD PRIME
    STONG, RE
    [J]. COMMENTARII MATHEMATICI HELVETICI, 1974, 49 (03) : 382 - 407
  • [47] DISTINGUISHING EIGENFORMS MODULO A PRIME IDEAL
    Chow, Sam
    Ghitza, Alexandru
    [J]. FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI, 2014, 51 (02) : 363 - 377
  • [48] CONGRUENCES OF THE FIBONACCI NUMBERS MODULO A PRIME
    Zyuz'kov, V. M.
    [J]. VESTNIK TOMSKOGO GOSUDARSTVENNOGO UNIVERSITETA-MATEMATIKA I MEKHANIKA-TOMSK STATE UNIVERSITY JOURNAL OF MATHEMATICS AND MECHANICS, 2021, (69): : 15 - 21
  • [49] On the distribution of arithmetic functions prime modulo
    Zhimbo, E.K.
    Chubarikov, V.N.
    [J]. Discrete Mathematics and Applications, 2001, 11 (05): : 461 - 470
  • [50] Combinatorial congruences modulo prime powers
    Sun, Zhi-Wei
    Davis, Donald M.
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 359 (11) : 5525 - 5553