Computing the permanent modulo a prime power

被引:1
|
作者
Bjorklund, Andreas [1 ]
Husfeldt, Thore [1 ,2 ]
Lyckberg, Isak [1 ]
机构
[1] Lund Univ, Box 118, S-22100 Lund, Sweden
[2] ITU Copenhagen, Rued Langgaards Vej 7, DK-2300 Copenhagen S, Denmark
基金
瑞典研究理事会;
关键词
Algorithms; Graph algorithms; Randomized algorithms; ALGORITHM;
D O I
10.1016/j.ipl.2017.04.015
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We show how to compute the permanent of an n x n integer matrix modulo p(k) in time n(k+ O(1)) if p = 2 and in time 2(n)/exp{Omega(gamma(2)n/p logp)} if p is an odd prime with kp < n, where gamma = 1-kp/n. Our algorithms are based on Ryser's formula, a randomized algorithm of Bax and Franklin, and exponential-space tabulation. Using the Chinese remainder theorem, we conclude that for each delta > 0 we can compute the permanent of an n x n integer matrix in time 2n/ exp{Omega(delta(2)n/beta(1/(1-delta)) log beta)}, provided there exists a real number beta such that vertical bar per A vertical bar <= beta(n) and beta <= (1/44 delta n)(1-delta) (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:20 / 25
页数:6
相关论文
共 50 条
  • [1] On the distribution of the power generator modulo a prime power
    Friedlander, JB
    Hansen, JSD
    Shparlinski, IE
    [J]. UNUSUAL APPLICATIONS OF NUMBER THEORY, 2004, 64 : 71 - 79
  • [2] CONGRUENCE MODULO-A POWER OF A PRIME
    MONZINGO, MG
    [J]. FIBONACCI QUARTERLY, 1976, 14 (01): : 23 - 24
  • [3] Distribution of exponential functions modulo a prime power
    Shparlinski, Igor E.
    [J]. JOURNAL OF NUMBER THEORY, 2014, 143 : 224 - 231
  • [4] ESTIMATION OF CHARACTER SUMS MODULO A POWER OF A PRIME
    BURGESS, DA
    [J]. PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 1986, 52 : 215 - 235
  • [5] REDUCING MULTINOMIAL COEFFICIENTS MODULO A PRIME POWER
    MARTIN, RJ
    MULLEN, GL
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1984, 10 (01) : 37 - 41
  • [6] On the smallest simultaneous power nonresidue modulo a prime
    Ford, Kevin
    Garaev, Moubariz Z.
    Konyagin, Sergei V.
    [J]. FORUM MATHEMATICUM, 2017, 29 (02) : 347 - 355
  • [7] ENUMERATION OF POWER SUMS MODULO-A PRIME
    ODLYZKO, AM
    STANLEY, RP
    [J]. JOURNAL OF NUMBER THEORY, 1978, 10 (02) : 263 - 272
  • [8] CANCELLATIONS BETWEEN KLOOSTERMAN SUMS MODULO A PRIME POWER WITH PRIME ARGUMENTS
    Liu, Kui
    Shparlinski, Igor E.
    Zhang, Tianping
    [J]. MATHEMATIKA, 2019, 65 (03) : 475 - 487
  • [9] ON THE DISTRIBUTION OF THE POWER GENERATOR MODULO A PRIME POWER FOR PARTS OF THE PERIOD
    El-Mahassni, Edwin D.
    [J]. BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2007, 13 (01): : 7 - 13
  • [10] A quantum algorithm for computing multiplicative order of integers modulo a prime
    Valluri, Maheswara Rao
    [J]. JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2023, 26 (02): : 573 - 584