The Partition Dimension of a Subdivision of a Complete Graph

被引:7
|
作者
Baskoro, Amrullah Edy Tri [1 ]
Simanjuntak, Rinovia [1 ]
Uttunggadewa, Saladin [1 ]
机构
[1] Inst Teknol Bandung, Fac Math & Nat Sci, Combinatorial Math Res Grp, Jalan Ganesa 10, Bandung 40132, Indonesia
关键词
Partition dimension; complete graph; subdivision;
D O I
10.1016/j.procs.2015.12.075
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The concept of a graph partition dimension was introduced by Chartrand et al. (1998). Let Pi = {L-1, L-2, L-3, ..., L-k} be a k-partition of V(G). The representation r(v|.) of a vertex v with respect to Pi is the vector (d(v, L-1), d(v, L-2), ..., d(v, L-k)). The partition Pi is called a resolving partition of G if r(w vertical bar Pi) not equal r(v vertical bar Pi) for all distinct w, v epsilon V(G). The partition dimension of a graph, denoted by pd(G), is the cardinality of a minimum resolving partition of G. This paper considers in finding partition dimensions of graphs obtained from a subdivision operation. In particular, we derive an upper bound of partition dimension of a subdivision of a complete graph K-n with n >= 9. Additionally for n epsilon [2, 8], we obtain the exact values of the partition dimensions. (C) 2015 The Authors. Published by Elsevier B.V.
引用
收藏
页码:53 / 59
页数:7
相关论文
共 50 条