On the nonstationary Erlang loss model

被引:7
|
作者
Zeifman, A. I. [1 ,2 ]
机构
[1] Vologda State Pedag Univ, Russian Acad Sci, Inst Informat Problems, Vologda, Russia
[2] Russian Acad Sci, CEMI, Vologda Sci Coordinating Ctr, Vologda, Russia
基金
俄罗斯基础研究基金会;
关键词
DEATH PROCESSES; NONHOMOGENEOUS BIRTH; CONVERGENCE; QUEUES;
D O I
10.1134/S000511790912008X
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Nonstationary loss queueing system (Erlang model) is considered. We study weak ergodicity, bounds on the rate of convergence, approximations, bounds for limit characteristics.
引用
收藏
页码:2003 / 2012
页数:10
相关论文
共 50 条
  • [21] The evergreen erlang loss function
    J. Medhi
    OPSEARCH, 2006, 43 (3) : 309 - 319
  • [22] Lack of Invariant Property of the Erlang Loss Model in Case of MAP Input
    Valentina Klimenok
    Che Soong Kim
    Dmitry Orlovsky
    Alexander Dudin
    Queueing Systems, 2005, 49 : 187 - 213
  • [23] The Erlang Multirate Loss Model Under the Threshold and Bandwidth Reservation Policies
    Moscholios, I. D.
    Logothetis, M. D.
    Koukias, M. N.
    2014 9TH INTERNATIONAL SYMPOSIUM ON COMMUNICATION SYSTEMS, NETWORKS & DIGITAL SIGNAL PROCESSING (CSNDSP), 2014, : 79 - 83
  • [24] Lack of invariant property of the Erlang loss model in case of MAP input
    Klimenok, V
    Kim, C
    Orlovsky, D
    Dudin, A
    QUEUEING SYSTEMS, 2005, 49 (02) : 187 - 213
  • [25] ON THE TRANSIENT-BEHAVIOR OF THE ERLANG LOSS MODEL - HEAVY USAGE ASYMPTOTICS
    XIE, SS
    KNESSL, C
    SIAM JOURNAL ON APPLIED MATHEMATICS, 1993, 53 (02) : 555 - 599
  • [26] Connection-dependent threshold model: a generalization of the Erlang multiple rate loss model
    Moscholios, ID
    Logothetis, MD
    Kokkinakis, GK
    PERFORMANCE EVALUATION, 2002, 48 (1-4) : 177 - 200
  • [27] An Erlang Multirate Loss Model Supporting Elastic Traffic under the Threshold Policy
    Moscholios, Ioannis D.
    Logothetis, Michael D.
    Boucouvalas, Anthony C.
    Vassilakis, Vassilios G.
    2015 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC), 2015, : 6092 - 6097
  • [28] CONVEXITY OF FUNCTIONS WHICH ARE GENERALIZATIONS OF THE ERLANG LOSS FUNCTION AND THE ERLANG DELAY FUNCTION
    JAGERS, AA
    VANDOORN, EA
    SIAM REVIEW, 1991, 33 (02) : 281 - 283
  • [29] AN INFINITE SUM OF ERLANG LOSS FUNCTIONS
    COOPER, RB
    SIAM REVIEW, 1994, 36 (01) : 112 - 113
  • [30] A SIMPLE APPROXIMATION FOR THE ERLANG LOSS FUNCTION
    PINSKY, E
    PERFORMANCE EVALUATION, 1992, 15 (03) : 155 - 161