Multi-atlas based neonatal brain extraction using a two-level patch-based label fusion strategy

被引:7
|
作者
Noorizadeh, Negar [1 ]
Kazemi, Kamran [1 ]
Danyali, Habibollah [1 ]
Aarabi, Ardalan [2 ,3 ]
机构
[1] Shiraz Univ Technol, Dept Elect & Elect Engn, Shiraz, Iran
[2] Univ Picardie Jules Verne, Fac Med, Amiens, France
[3] CHU AMIENS SITE SUD, Lab Funct Neurosci & Pathol LNFP, Univ Res Ctr, EA4559, Ave Laennec, F-80420 Salouel, France
关键词
Neonatal brain MRI; Brain extraction; Multi-atlas; Label fusion; Un-certain voxel; Gaussian Kernel; SKULL-STRIPPING METHOD; MRI SEGMENTATION; REPRESENTATION; IMAGES; REGISTRATION; HIPPOCAMPUS;
D O I
10.1016/j.bspc.2019.101602
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Compared to adults, brain extraction from magnetic resonance (MR) images of newborn infants is particularly challenging due to their smaller brain size, which causes lower spatial resolution, lower tissue contrast and ambiguous tissue intensity distribution. In this work, a multi-atlas patch-based label fusion method is presented for automatic brain extraction from neonatal head MR images. In this method, a number of atlases are first selected uniformly among a set of training images. After nonlinear alignment of the selected atlas images to the target image, a probabilistic gray level-coded brain mask is created and used to assign brain/non-brain labels to voxels with different degree of uncertainty using a modified non-local patch-based label fusion method based on the integration of low-level and in-depth search patch selection strategies. Experiments with 40 neonates aged between 37 and 44 weeks showed an average Dice, Jaccard and Conformity coefficients of 0.993, 0.986 and 0.986, respectively. We compared the performance of the proposed method with two multi atlas-based methods, i.e. NLPB and MASS, and two popular non-learning-based methods, i.e. BSE and BET. Compared to these methods, our method achieved higher accuracy with brain masks very close to manually extracted ones and produced lower false negative and false positive rates. Our proposed method allows for accurate and efficient brain extraction, a crucial step in brain MRI applications such as brain tissue segmentation and volume estimation in neonates. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Semi-Supervised Sparse Label Fusion for Multi-atlas Based Segmentation
    Guo, Qimiao
    Zhang, Daoqiang
    PATTERN RECOGNITION, 2012, 321 : 471 - 479
  • [22] Confidence-Guided Sequential Label Fusion for Multi-atlas Based Segmentation
    Zhang, Daoqiang
    Wu, Guorong
    Jia, Hongjun
    Shen, Dinggang
    MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION, MICCAI 2011, PT III, 2011, 6893 : 643 - 650
  • [23] An automatic multi-atlas prostate segmentation in MRI using a multiscale representation and a label fusion strategy
    Alvarez, Charlens
    Martinez, Fabio
    Romero, Eduardo
    10TH INTERNATIONAL SYMPOSIUM ON MEDICAL INFORMATION PROCESSING AND ANALYSIS, 2015, 9287
  • [24] Segmentation and labeling of the ventricular system in normal pressure hydrocephalus using patch-based tissue classification and multi-atlas labeling
    Ellingsen, Lotta M.
    Roy, Snehashis
    Carass, Aaron
    Blitz, Ari M.
    Pham, Dzung L.
    Prince, Jerry L.
    MEDICAL IMAGING 2016: IMAGE PROCESSING, 2016, 9784
  • [25] Discriminative Dimensionality Reduction for Patch-Based Label Fusion
    Sanroma, Gerard
    Benkarim, Oualid M.
    Piella, Gemma
    Wu, Guorong
    Zhu, Xiaofeng
    Shen, Dinggang
    Gonzalez Ballester, Miguel Angel
    MACHINE LEARNING MEETS MEDICAL IMAGING, 2015, 9487 : 94 - 103
  • [26] Nonlocal Patch-Based Label Fusion for Hippocampus Segmentation
    Coupe, Pierrick
    Manjon, Jose V.
    Fonov, Vladimir
    Pruessner, Jens
    Robles, Montserrat
    Collins, D. Louis
    MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION - MICCAI 2010, PT III, 2010, 6363 : 129 - +
  • [27] High-Order Feature Learning for Multi-Atlas Based Label Fusion: Application to Brain Segmentation With MRI
    Sun, Liang
    Shao, Wei
    Wang, Mingliang
    Zhang, Daoqiang
    Liu, Mingxia
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2020, 29 (29) : 2702 - 2713
  • [28] Multi-atlas based segmentation using probabilistic label fusion with adaptive weighting of image similarity measures
    Sjoberg, C.
    Ahnesjo, A.
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2013, 110 (03) : 308 - 319
  • [29] Improving label fusion in multi-atlas based segmentation by locally combining atlas selection and performance estimation
    Langerak, T. R.
    van der Heide, U. A.
    Kotte, A. N. T. J.
    Berendsen, F. F.
    Pluim, J. P. W.
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2015, 130 : 71 - 79
  • [30] LABEL FUSION IN MULTI-ATLAS BASED SEGMENTATION WITH USER-DEFINED LOCAL WEIGHTS
    Langerak, T. R.
    van der Heide, U. A.
    Kotte, A. N. T. J.
    Berendsen, F. F.
    Pluim, J. P. W.
    2011 8TH IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: FROM NANO TO MACRO, 2011, : 1480 - 1483