Improved Statistical Methods and Bioinformatic Tools to Integrate Multi-Omic Data in Disease Association Studies

被引:0
|
作者
Gonzalez, Juan R. [1 ]
机构
[1] Barcelona Inst Global Hlth ISGlobal, Bioinformat Res Grp Genet Epidemiol BRGE, Barcelona, Spain
关键词
D O I
暂无
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
24
引用
收藏
页码:223 / 223
页数:1
相关论文
共 35 条
  • [11] Multi-Omic Biomarkers as Potential Tools for the Characterisation of Pancreatic Cystic Lesions and Cancer: Innovative Patient Data Integration
    Kane, Laura E.
    Mellotte, Gregory S.
    Conlon, Kevin C.
    Ryan, Barbara M.
    Maher, Stephen G.
    CANCERS, 2021, 13 (04) : 1 - 23
  • [12] Applying Artificial Intelligence to Multi-Omic Data: New Functional Variants in Parkinson's Disease
    Welton, Thomas
    Tan, Eng-King
    MOVEMENT DISORDERS, 2021, 36 (02) : 347 - 347
  • [13] The multi-omic response to exercise training across rat tissues: interactive tools for data dissemination through the MoTrPAC data hub
    Lindholm, Malene E.
    Zhen, Jimmy
    Amar, David
    Gay, Nicole R.
    Beltran, Pierre M. Jean
    PHYSIOLOGY, 2024, 39
  • [14] Merged Affinity Network Association Clustering: Joint multi-omic/clinical clustering to identify disease endotypes
    Tyler, Scott R.
    Chun, Yoojin
    Ribeiro, Victoria M.
    Grishina, Galina
    Grishin, Alexander
    Hoffman, Gabriel E.
    Do, Anh N.
    Bunyavanich, Supinda
    CELL REPORTS, 2021, 35 (02):
  • [15] Association of maternal gut microbiota and plasma metabolism with congenital heart disease in offspring: a multi-omic analysis
    Wang, Tingting
    Chen, Lizhang
    Huang, Peng
    Yang, Tubao
    Zhang, Senmao
    Zhao, Lijuan
    Chen, Letao
    Ye, Ziwei
    Luo, Liu
    Qin, Jiabi
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [16] Association of maternal gut microbiota and plasma metabolism with congenital heart disease in offspring: a multi-omic analysis
    Tingting Wang
    Lizhang Chen
    Peng Huang
    Tubao Yang
    Senmao Zhang
    Lijuan Zhao
    Letao Chen
    Ziwei Ye
    Liu Luo
    Jiabi Qin
    Scientific Reports, 11
  • [17] IDENTIFYING MOLECULAR FEATURES CONTRIBUTING TO DISEASE HETEROGENEITY IN CROHN'S DISEASE USING MULTI-OMIC DATA INTEGRATION
    Sudhakar, Padhmanand
    Verstockt, Bram
    Creyns, Brecht
    Cremer, Jonathan
    Van Assche, Gert A.
    Korcsmaros, Tamas
    Ferrante, Marc
    Vermeire, Severine
    GASTROENTEROLOGY, 2019, 156 (06) : S1117 - S1117
  • [18] Multi-omic data integration assisted identification of molecular features contributing to disease heterogeneity in Crohn's disease
    Sudhakar, P.
    Verstockt, B.
    Creyns, B.
    Cremer, J.
    van Assche, G.
    Korcsmaros, T.
    Ferrante, M.
    Vermeire, S.
    JOURNAL OF CROHNS & COLITIS, 2019, 13 : S86 - S86
  • [19] Exploring machine learning strategies for predicting cardiovascular disease risk factors from multi-omic data
    Drouard, Gabin
    Mykkanen, Juha
    Heiskanen, Jarkko
    Pohjonen, Joona
    Ruohonen, Saku
    Pahkala, Katja
    Lehtimaki, Terho
    Wang, Xiaoling
    Ollikainen, Miina
    Ripatti, Samuli
    Pirinen, Matti
    Raitakari, Olli
    Kaprio, Jaakko
    BMC MEDICAL INFORMATICS AND DECISION MAKING, 2024, 24 (01)
  • [20] Prediction of disease-free survival for precision medicine using cooperative learning on multi-omic data
    Hahn, Georg
    Prokopenko, Dmitry
    Hecker, Julian
    Lutz, Sharon M.
    Mullin, Kristina
    Sejour, Leinal
    Hide, Winston
    Vlachos, Ioannis
    DeSantis, Stacia
    Tanzi, Rudolph E.
    Lange, Christoph
    BRIEFINGS IN BIOINFORMATICS, 2024, 25 (04)