AN ADVERSARIAL TRAINING FRAMEWORK FOR SENTINEL-2 IMAGE SUPER-RESOLUTION

被引:1
|
作者
Ciotola, M. [1 ]
Martinelli, A. [1 ]
Mazza, A. [1 ]
Scarpa, G. [1 ]
机构
[1] Univ Federico II, Dipartimento Ingn Elettr & Tecnol Informaz, Via Claudio 21, I-80125 Naples, Italy
关键词
Super-Resolution; Data-Fusion; Convolutional Neural Network; Deep Learning; Sentinel-2; Generative Adversarial Network; SUPER RESOLUTION;
D O I
10.1109/IGARSS46834.2022.9883144
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
In this work is presented a new adversarial training framework for deep learning neural networks for super-resolution of Sentinel 2 images, exploiting the data fusion techniques on 10 and 20 meters bands. The proposed scheme is fully convolutional and tries to answer the need for generalization in scale, producing realistic and detailed accurate images. Furthermore, the presence of a L-1 loss limits the instability of GAN training, limiting possible problems of spectral distortion. In our preliminary experiments, the GAN training scheme has shown comparable results in comparison with the baseline approach.
引用
收藏
页码:3782 / 3785
页数:4
相关论文
共 50 条
  • [31] Coupled Adversarial Learning for Single Image Super-Resolution
    Hsu, Chih-Chung
    Huang, Kuan-Yu
    2020 IEEE 11TH SENSOR ARRAY AND MULTICHANNEL SIGNAL PROCESSING WORKSHOP (SAM), 2020,
  • [32] Image Super-Resolution as a Defense Against Adversarial Attacks
    Mustafa, Aamir
    Khan, Salman H.
    Hayat, Munawar
    Shen, Jianbing
    Shao, Ling
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2020, 29 : 1711 - 1724
  • [33] Achieving Information Super-resolution for Sentinel-2 NDVI Through Gaussian Process Regression
    Karmakar, Chandrabali
    Antunes, Ana
    Datcu, Mihai
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 338 - 341
  • [34] SEN2VENμS, a Dataset for the Training of Sentinel-2 Super-Resolution Algorithms (vol 7, 96, 2022)
    Michel, Julien
    Vinasco-Salinas, Juan
    Inglada, Jordi
    Hagolle, Olivier
    DATA, 2023, 8 (03)
  • [35] PROBA-V MULTI-TEMPORAL SUPER-RESOLUTION GUIDED BY SENTINEL-2
    Inzerillo, Gabriele
    Valsesia, Diego
    Magli, Enrico
    Niro, Fabrizio
    De Grandis, Erminia
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 5139 - 5142
  • [36] CHALLENGES IN PREPARING DATASETS FOR SUPER-RESOLUTION ON THE EXAMPLE OF SENTINEL-2 AND PLANET SCOPE IMAGES
    Malczewska, A.
    Malczewski, J.
    Hejmanowska, B.
    2ND GEOBENCH WORKSHOP ON EVALUATION AND BENCHMARKING OF SENSORS, SYSTEMS AND GEOSPATIAL DATA IN PHOTOGRAMMETRY AND REMOTE SENSING, VOL. 48-1, 2023, : 91 - 98
  • [37] Super-resolution of Sentinel-2 images: Learning a globally applicable deep neural network
    Lanaras, Charis
    Bioucas-Dias, Jose
    Galliani, Silvano
    Baltsavias, Emmanuel
    Schindler, Konrad
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2018, 146 : 305 - 319
  • [38] DIFFUSION MODELS WITH CROSS-MODAL DATA FOR SUPER-RESOLUTION OF SENTINEL-2 TO 2.5 METER RESOLUTION
    Sarmad, Muhammad
    Kampffmeyer, Michael C.
    Salberg, Arnt-Borre
    IGARSS 2024-2024 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, IGARSS 2024, 2024, : 1103 - 1107
  • [39] Coupled Dictionary Training for Image Super-Resolution
    Yang, Jianchao
    Wang, Zhaowen
    Lin, Zhe
    Cohen, Scott
    Huang, Thomas
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2012, 21 (08) : 3467 - 3478
  • [40] Image Super-Resolution using Generative Adversarial Networks with EfficientNetV2
    AlTakrouri, Saleh
    Noor, Norliza Mohd
    Ahmad, Norulhusna
    Justinia, Taghreed
    Usman, Sahnius
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2023, 14 (02) : 879 - 887