AN ADVERSARIAL TRAINING FRAMEWORK FOR SENTINEL-2 IMAGE SUPER-RESOLUTION

被引:1
|
作者
Ciotola, M. [1 ]
Martinelli, A. [1 ]
Mazza, A. [1 ]
Scarpa, G. [1 ]
机构
[1] Univ Federico II, Dipartimento Ingn Elettr & Tecnol Informaz, Via Claudio 21, I-80125 Naples, Italy
关键词
Super-Resolution; Data-Fusion; Convolutional Neural Network; Deep Learning; Sentinel-2; Generative Adversarial Network; SUPER RESOLUTION;
D O I
10.1109/IGARSS46834.2022.9883144
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
In this work is presented a new adversarial training framework for deep learning neural networks for super-resolution of Sentinel 2 images, exploiting the data fusion techniques on 10 and 20 meters bands. The proposed scheme is fully convolutional and tries to answer the need for generalization in scale, producing realistic and detailed accurate images. Furthermore, the presence of a L-1 loss limits the instability of GAN training, limiting possible problems of spectral distortion. In our preliminary experiments, the GAN training scheme has shown comparable results in comparison with the baseline approach.
引用
收藏
页码:3782 / 3785
页数:4
相关论文
共 50 条
  • [1] Super-Resolution of Sentinel-2 Imagery Using Generative Adversarial Networks
    Salgueiro Romero, Luis
    Marcello, Javier
    Vilaplana, Veronica
    REMOTE SENSING, 2020, 12 (15)
  • [2] AN APPROACH TO SUPER-RESOLUTION OF SENTINEL-2 IMAGES BASED ON GENERATIVE ADVERSARIAL NETWORKS
    Zhang, Kexin
    Sumbul, Gencer
    Demir, Begum
    2020 MEDITERRANEAN AND MIDDLE-EAST GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (M2GARSS), 2020, : 69 - 72
  • [3] A CNN-Based Sentinel-2 Image Super-Resolution Method Using Multiobjective Training
    Vasilescu, Vlad
    Datcu, Mihai
    Faur, Daniela
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [4] Super-Resolution Image Reconstruction Method between Sentinel-2 and Gaofen-2 Based on Cascaded Generative Adversarial Networks
    Wang, Xinyu
    Ao, Zurui
    Li, Runhao
    Fu, Yingchun
    Xue, Yufei
    Ge, Yunxin
    APPLIED SCIENCES-BASEL, 2024, 14 (12):
  • [5] Landsat Super-Resolution Enhancement Using Convolution Neural Networks and Sentinel-2 for Training
    Pouliot, Darren
    Latifovic, Rasim
    Pasher, Jon
    Duffe, Jason
    REMOTE SENSING, 2018, 10 (03)
  • [6] A Real-World Benchmark for Sentinel-2 Multi-Image Super-Resolution
    Pawel Kowaleczko
    Tomasz Tarasiewicz
    Maciej Ziaja
    Daniel Kostrzewa
    Jakub Nalepa
    Przemyslaw Rokita
    Michal Kawulok
    Scientific Data, 10
  • [7] A Real-World Benchmark for Sentinel-2 Multi-Image Super-Resolution
    Kowaleczko, Pawel
    Tarasiewicz, Tomasz
    Ziaja, Maciej
    Kostrzewa, Daniel
    Nalepa, Jakub
    Rokita, Przemyslaw
    Kawulok, Michal
    SCIENTIFIC DATA, 2023, 10 (01)
  • [8] SEN2VENμS, a Dataset for the Training of Sentinel-2 Super-Resolution Algorithms
    Michel, Julien
    Vinasco-Salinas, Juan
    Inglada, Jordi
    Hagolle, Olivier
    DATA, 2022, 7 (07)
  • [9] Coupled Adversarial Training for Remote Sensing Image Super-Resolution
    Lei, Sen
    Shi, Zhenwei
    Zou, Zhengxia
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2020, 58 (05): : 3633 - 3643
  • [10] Self-Supervised Super-Resolution on Sentinel-2 Imagery
    Yu C.-H.
    Hsieh M.-C.
    Ren H.
    Journal of the Chinese Institute of Civil and Hydraulic Engineering, 2022, 34 (03): : 243 - 248