First- and second-order energy stable methods for the modified phase field crystal equation

被引:40
|
作者
Lee, Hyun Geun [1 ]
Shin, Jaemin [2 ]
Lee, June-Yub [3 ]
机构
[1] Kwangwoon Univ, Dept Math, Seoul 01897, South Korea
[2] Ewha Womans Univ, Inst Math Sci, Seoul 03760, South Korea
[3] Ewha Womans Univ, Dept Math, Seoul 03760, South Korea
基金
新加坡国家研究基金会;
关键词
Phase field crystal equation; Modified phase field crystal equation; Energy stability; Fourier spectral method; FINITE-DIFFERENCE SCHEME; MODELS;
D O I
10.1016/j.cma.2017.03.033
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The phase field crystal (PFC) model was extended to the modified phase field crystal (MPFC) model, which is a sixth-order nonlinear damped wave equation, to include not only diffusive dynamics but also elastic interactions. In this paper, we present temporally first- and second-order accurate methods for the MPFC equation, which are based on an appropriate splitting of the energy for the PFC equation. And we use the Fourier spectral method for the spatial discretization. The first- and second-order methods are shown analytically to be unconditionally stable with respect to the energy and pseudoenergy of the MPFC equation, respectively. Numerical experiments are presented demonstrating the accuracy and energy stability of the proposed methods. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:1 / 17
页数:17
相关论文
共 50 条
  • [31] A SECOND-ORDER, GLOBAL-IN-TIME ENERGY STABLE IMPLICIT-EXPLICIT RUNGE-KUTTA SCHEME FOR THE PHASE FIELD CRYSTAL EQUATION
    Zhang, Hong
    Wang, Haifeng
    Teng, Xueqing
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2024, 62 (06) : 2667 - 2697
  • [32] A Relaxed Decoupled Second-Order Energy-Stable Scheme for the Binary Phase-Field Crystal Model
    Zhang, Xin
    Yang, Junxiang
    Tan, Zhijun
    EAST ASIAN JOURNAL ON APPLIED MATHEMATICS, 2024,
  • [33] Diagnosing first- and second-order phase transitions with probes of quantum chaos
    Huh, Kyoung-Bum
    Ikeda, Kazuki
    Jahnke, Viktor
    Kim, Keun-Young
    PHYSICAL REVIEW E, 2021, 104 (02)
  • [34] Coexisting first- and second-order electronic phase transitions in a correlated oxide
    Post, K. W.
    McLeod, A. S.
    Hepting, M.
    Bluschke, M.
    Wang, Yifan
    Cristiani, G.
    Logvenov, G.
    Charnukha, A.
    Ni, G. X.
    Radhakrishnan, Padma
    Minola, M.
    Pasupathy, A.
    Boris, A., V
    Benckiser, E.
    Dahmen, K. A.
    Carlson, E. W.
    Keimer, B.
    Basov, D. N.
    NATURE PHYSICS, 2018, 14 (10) : 1056 - +
  • [35] Identification of first- and second-order magnetic phase transitions in ferromagnetic perovskites
    Mira, J
    Rivas, J
    Rivadulla, F
    Quintela, MAL
    PHYSICA B-CONDENSED MATTER, 2002, 320 (1-4) : 23 - 25
  • [36] First- and second-order phase transitions in the Holstein-Hubbard model
    Koller, W
    Meyer, D
    Ono, Y
    Hewson, AC
    EUROPHYSICS LETTERS, 2004, 66 (04): : 559 - 564
  • [37] Coexisting first- and second-order electronic phase transitions in a correlated oxide
    K. W. Post
    A. S. McLeod
    M. Hepting
    M. Bluschke
    Yifan Wang
    G. Cristiani
    G. Logvenov
    A. Charnukha
    G. X. Ni
    Padma Radhakrishnan
    M. Minola
    A. Pasupathy
    A. V. Boris
    E. Benckiser
    K. A. Dahmen
    E. W. Carlson
    B. Keimer
    D. N. Basov
    Nature Physics, 2018, 14 : 1056 - 1061
  • [38] First- Versus Second-Order Magnetocaloric Material for Thermomagnetic Energy Conversion
    Almanza, Morgan
    Pasko, Alexandre
    Mazaleyrat, Frederic
    LoBue, Martino
    IEEE TRANSACTIONS ON MAGNETICS, 2017, 53 (11)
  • [39] Independent first- and second-order motion energy analyses of optic flow
    David R. Badcock
    Sieu K. Khuu
    Psychological Research, 2001, 65 : 50 - 56
  • [40] Exceptional points near first- and second-order quantum phase transitions
    Stransky, Pavel
    Dvorak, Martin
    Cejnar, Pavel
    PHYSICAL REVIEW E, 2018, 97 (01)