INVESTIGATION OF HIGH-ORDER TEMPORAL SCHEMES FOR THE DISCONTINUOUS GALERKIN SOLUTION OF THE NAVIER-STOKES EQUATIONS

被引:0
|
作者
Bassi, F. [1 ]
Colombo, A. [1 ]
De Bartolo, C. [2 ]
Franchina, N. [1 ]
Ghidoni, A. [3 ]
Nigro, A. [2 ]
机构
[1] Univ Bergamo, Dept Ind Engn, I-24044 Dalmine, BG, Italy
[2] Univ Calabria, Dept Mech Energet & Management, I-87036 Arcavacata Di Rende, CS, Italy
[3] Univ Brescia, Dept Mech & Ind Engn, Via Branze 38, I-25123 Brescia, Italy
来源
11TH WORLD CONGRESS ON COMPUTATIONAL MECHANICS; 5TH EUROPEAN CONFERENCE ON COMPUTATIONAL MECHANICS; 6TH EUROPEAN CONFERENCE ON COMPUTATIONAL FLUID DYNAMICS, VOLS V - VI | 2014年
关键词
Discontinuous Galerkin methods; high-order temporal schemes; Runge-Kutta methods; multistep methods;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work different high-order temporal schemes, used to advance in time the DG space discretized equations, are investigated: the Explicit Singly Diagonally Implicit Runge Kutta (ESDIRK), the Modified Extended BDF (MEBDF), the Two Implicit Advanced Step-point (TIAS) and a Rosenbrock method. The proposed schemes are evaluated in terms of accuracy and efficiency for two unsteady test-cases: (i) the convection of an inviscid isentropic vortex and (ii) the laminar flow around a cylinder.
引用
收藏
页码:5651 / 5662
页数:12
相关论文
共 50 条
  • [41] A discontinuous Galerkin method for the incompressible Navier-Stokes equations
    Karakashian, O
    Katsaounis, T
    DISCONTINUOUS GALERKIN METHODS: THEORY, COMPUTATION AND APPLICATIONS, 2000, 11 : 157 - 166
  • [42] An artificial compressibility flux for the discontinuous Galerkin solution of the incompressible Navier-Stokes equations
    Bassi, F.
    Crivellini, A.
    Di Pietro, D. A.
    Rebay, S.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2006, 218 (02) : 794 - 815
  • [43] Spectral p-multigrid discontinuous Galerkin solution of the Navier-Stokes equations
    Bassi, F.
    Franchina, N.
    Ghidoni, A.
    Rebay, S.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2011, 67 (11) : 1540 - 1558
  • [44] Power law slip boundary condition for Navier-Stokes equations: Discontinuous Galerkin schemes
    Djoko, J. K.
    Konlack, V. S.
    Sayah, T.
    COMPUTATIONAL GEOSCIENCES, 2024, 28 (01) : 107 - 127
  • [45] Power law slip boundary condition for Navier-Stokes equations: Discontinuous Galerkin schemes
    J. K. Djoko
    V. S. Konlack
    T. Sayah
    Computational Geosciences, 2024, 28 : 107 - 127
  • [46] Arbitrary High-Order Discontinuous Galerkin Schemes for the Magnetohydrodynamic Equations
    Arne Taube
    Michael Dumbser
    Dinshaw S. Balsara
    Claus-Dieter Munz
    Journal of Scientific Computing, 2007, 30 : 441 - 464
  • [47] High-Order Local Discontinuous Galerkin Method with Multi-Resolution WENO Limiter for Navier-Stokes Equations on Triangular Meshes
    Lu, Yizhou
    Zhu, Jun
    Cui, Shengzhu
    Wang, Zhenming
    Tian, Linlin
    Zhao, Ning
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2023, 33 (05) : 1217 - 1239
  • [48] Arbitrary high-order discontinuous Galerkin schemes for the magnetohydrodynamic equations
    Taube, Arne
    Dumbser, Michael
    Balsara, Dinshaw S.
    Munz, Claus-Dieter
    JOURNAL OF SCIENTIFIC COMPUTING, 2007, 30 (03) : 441 - 464
  • [49] A parallel hp-adaptive high order discontinuous Galerkin method for the incompressible Navier-Stokes equations
    Chalmers N.
    Agbaglah G.
    Chrust M.
    Mavriplis C.
    Journal of Computational Physics: X, 2019, 2
  • [50] An optimal order interior penalty discontinuous Galerkin discretization of the compressible Navier-Stokes equations
    Hartmann, Ralf
    Houston, Paul
    JOURNAL OF COMPUTATIONAL PHYSICS, 2008, 227 (22) : 9670 - 9685