Dynamical Behavior of Traveling Wave Solutions for a (2+1)-Dimensional Bogoyavlenskii Coupled System

被引:37
|
作者
Leta, Temesgen Desta [1 ,2 ]
Liu, Wenjun [1 ]
El Achab, Abdelfattah [3 ]
Rezazadeh, Hadi [4 ]
Bekir, Ahmet [5 ]
机构
[1] Nanjing Univ Informat Sci & Technol, 219 Ningliu Rd, Nanjing 210044, Peoples R China
[2] Dilla Univ, Dept Math, Dilla 419, Ethiopia
[3] Univ Cadi Ayyad Bd du Prince Moulay Abdellah, Fac Sci, Dept Math, BP 2390, Marrakech, Morocco
[4] Amol Univ Special Modern Technol, Fac Engn Technol, Amol, Iran
[5] Imarli St 28-4, TR-26030 Eskisehir, Turkey
基金
中国国家自然科学基金;
关键词
Solitary wave; Kink and anti-kink wave; Bifurcation; Hamiltonian system; Bogoyavlenskii Coupled System;
D O I
10.1007/s12346-021-00449-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we applied some computational tools, namely the modified extended tanh method via a Riccati equation, the general Exp(a)-function method and the bifurcation methods to study a nonlinear (2+1)-dimensional Bogoyavlenskii coupled system in thin-film ferroelectric medium to construct exact traveling wave solutions. By applying a classical wave transformation we obtained an ordinary differential equations. As a result, some new traveling wave solutions are obtained including hyperbolic, trigonometric, exponential functions and rational forms. If the parameters take specific values, then the periodic wave, solitary waves, kink and anti-kink wave solutions are derived from the traveling waves. Also, we draw 2D and 3D graphics of exact solutions for the special cases of these nonlinear equations by the help of programming language Maple.
引用
收藏
页数:22
相关论文
共 50 条
  • [31] Exact Traveling Wave Solutions to the (2+1)-Dimensional Jaulent-Miodek Equation
    Gu, Yongyi
    Deng, Bingmao
    Lin, Jianming
    ADVANCES IN MATHEMATICAL PHYSICS, 2018, 2018
  • [32] Bifurcation of traveling wave solutions of (2+1) dimensional Konopelchenko-Dubrovsky equations
    He, Tian-lan
    APPLIED MATHEMATICS AND COMPUTATION, 2008, 204 (02) : 773 - 783
  • [33] Dynamical behavior of solitons of the (2+1)-dimensional Konopelchenko Dubrovsky system
    A. Hussain
    T. Parveen
    B. A. Younis
    Huda U. M. Ahamd
    T. F. Ibrahim
    Mohammed Sallah
    Scientific Reports, 14
  • [34] Dynamical behavior of solitons of the (2+1)-dimensional Konopelchenko Dubrovsky system
    Hussain, A.
    Parveen, T.
    Younis, B. A.
    Ahamd, Huda U. M.
    Ibrahim, T. F.
    Sallah, Mohammed
    SCIENTIFIC REPORTS, 2024, 14 (01)
  • [35] Bifurcations and parametric representations of traveling wave solutions for the (2+1)-dimensional Boiti-Leon-Pempinelle system
    Li, Jibin
    Zhang, Yi
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2011, 34 (02) : 147 - 151
  • [36] Dynamical behavior of traveling wave solutions for the K(2, 2) equation
    Zhang, Lina
    TURKISH JOURNAL OF PHYSICS, 2011, 35 (02): : 121 - 127
  • [37] A New Composite Technique to Obtain Non-traveling Wave Solutions of the (2+1)-dimensional Extended Variable Coefficients Bogoyavlenskii-Kadomtsev-Petviashvili Equation
    Zheng, Xiaoxiao
    Zhao, Lingling
    Xu, Yuanqing
    QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2023, 22 (02)
  • [38] Nonlocal symmetry and exact solutions of the(2+1)-dimensional modified Bogoyavlenskii–Schiff equation
    黄丽丽
    陈勇
    Chinese Physics B, 2016, 25 (06) : 67 - 74
  • [39] Solitary wave dynamics of the extended (2+1)-dimensional Calogero–Bogoyavlenskii–Schiff equation
    Maasoomah Sadaf
    Saima Arshed
    Ghazala Akram
    Muhammad Zubair Raza
    Hadi Rezazadeh
    Mohammad Ali Hosseinzadeh
    Optical and Quantum Electronics, 56
  • [40] Quasi-periodic wave solutions for the (2+1)-dimensional generalized Calogero-Bogoyavlenskii-Schiff (CBS) equation
    Wang, Jun-min
    Yang, Xiao
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (04) : 2256 - 2261