CRE solvability and soliton-cnoidal wave interaction solutions of the dissipative (2+1)-dimensional AKNS equation

被引:18
|
作者
Wang, Hui [1 ]
Wang, Yun-Hu [1 ,2 ]
机构
[1] Shanghai Maritime Univ, Coll Art & Sci, Shanghai 201306, Peoples R China
[2] Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China
基金
中国国家自然科学基金;
关键词
Consistent Riccati expansion; Nonlocal symmetry; Soliton-cnoidal solution; NONLOCAL SYMMETRY; 2+1 DIMENSIONS; REDUCTIONS; SYSTEM;
D O I
10.1016/j.aml.2017.02.007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
By using the truncated Painleve expansion and consistent Riccati expansion (CRE), we investigate a dissipative (2 + 1)-dimensional Ablowitz-Kaup-Newell-Segur (AKNS) equation. Through the truncated Painleve expansion, its nonlocal symmetry and Backlund transformation (BT) are presented. Then the nonlocal symmetry is localized to the corresponding nonlocal group by an enlarged system. Based on the CRE method proposed by Lou (2013), the AKNS equation is proved CRE solvable, and the soliton-cnoidal wave interaction solutions are explicitly given. (C) 2017 Elsevier Ltd. All rights reserved.
引用
下载
收藏
页码:161 / 167
页数:7
相关论文
共 50 条
  • [21] Multiple residual symmetries and soliton-cnoidal wave interaction solution of the (2+1)-dimensional negative-order modified Calogero-Bogoyavlenskii-Schiff equation
    Cheng, Wenguang
    Qiu, Deqin
    Xu, Tianzhou
    EUROPEAN PHYSICAL JOURNAL PLUS, 2020, 135 (01):
  • [22] Resonant line wave soliton solutions and interaction solutions for (2+1)-dimensional nonlinear wave equation
    Chen, Qingqing
    Qi, Zequn
    Chen, Junchao
    Li, Biao
    RESULTS IN PHYSICS, 2021, 27
  • [23] Nonlocal symmetry and group invariant solutions of dissipative (2+1)-dimensional AKNS equation
    Ab, Yarong Xia
    Geng, Jiayang
    Yao, Ruoxia
    APPLIED MATHEMATICS LETTERS, 2024, 152
  • [24] Resonant Soliton and Soliton-Cnoidal Wave Solutions for a (3+1)-Dimensional Korteweg-de Vries-Like Equation
    Ma, Zheng-Yi
    Fei, Jin-Xi
    Chen, Jun-Chao
    Zhu, Quan-Yong
    COMPLEXITY, 2019, 2019
  • [25] Nonlocal symmetry, Darboux transformation and soliton-cnoidal wave interaction solution for the shallow water wave equation
    Chen, Junchao
    Ma, Zhengyi
    Hu, Yahong
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 460 (02) : 987 - 1003
  • [26] Residual symmetries and soliton-cnoidal wave interaction solutions for the negative-order Korteweg-de Vries equation
    Chen, Junchao
    Zhu, Shundong
    APPLIED MATHEMATICS LETTERS, 2017, 73 : 136 - 142
  • [27] Soliton molecule and their interaction solutions for the (2+1)-dimensional gKDKK equation
    Fan, Shengwan
    Wu, Huiling
    Fei, Jinxi
    Cao, Weiping
    Ma, Zhengyi
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2022, 36 (05):
  • [28] Backlund transformations, rational solutions and soliton-cnoidal wave solutions of the modified Kadomtsev-Petviashvili equation
    Zhao, Zhonglong
    APPLIED MATHEMATICS LETTERS, 2019, 89 : 103 - 110
  • [29] Non-local residual symmetry and soliton-cnoidal periodic wave interaction solutions of the KdV6 equation
    Zhang, Luwei
    Cheng, Xueping
    Yang, Wei
    Zhao, Zhangxuan
    FRONTIERS IN PHYSICS, 2023, 11
  • [30] The Soliton Wave Solutions and Bifurcations of the (2 + 1)-Dimensional Dissipative Long Wave Equation
    Deniu Yang
    Juan Zhang
    Journal of Nonlinear Mathematical Physics, 2022, 29 : 659 - 677