Fast neural networks learning techniques for signal compression

被引:0
|
作者
Puchala, Dariusz [1 ]
Yatsymirskyy, Mykhaylo [1 ]
机构
[1] Tech Univ Lodz, Inst Comp Sci, Fac Tech Phys Comp Sci & Appl Math, PL-90924 Lodz, Poland
来源
PRZEGLAD ELEKTROTECHNICZNY | 2010年 / 86卷 / 01期
关键词
neural networks; fast orthogonal transforms; IMAGE COMPRESSION;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper the comparative study of two learning techniques of fast artificial neural networks with application to lossy signal compression is presented. The experimental results prove faster convergence and better final results for energy maximization technique. Moreover the artificial neural network approach gives significantly smaller errors of signal reconstruction than transforms with fixed basis functions.
引用
收藏
页码:189 / 191
页数:3
相关论文
共 50 条
  • [31] A FAST AND ROBUST LEARNING ALGORITHM FOR FEEDFORWARD NEURAL NETWORKS
    WEYMAERE, N
    MARTENS, JP
    [J]. NEURAL NETWORKS, 1991, 4 (03) : 361 - 369
  • [32] A fast learning strategy for multilayer feedforward neural networks
    Chen, Huawei
    Zhong, Hualan
    Yuan, Haiying
    Jin, Fan
    [J]. WCICA 2006: SIXTH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION, VOLS 1-12, CONFERENCE PROCEEDINGS, 2006, : 3019 - +
  • [33] A fast learning algorithm for training feedforward neural networks
    Goel, Ashok Kumar
    Saxena, Suresh C.
    Bhanot, Surekha
    [J]. INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2006, 37 (10) : 709 - 722
  • [34] Artificial neural networks and advanced supervised learning techniques
    Basic, BD
    [J]. KINESIOLOGY NEW PERSPECTIVES, PROCEEDINGS BOOK, 2002, : 595 - 604
  • [35] New pruning techniques for constructive neural networks with application to image compression
    Ma, L
    Khorasani, K
    [J]. SIGNAL PROCESSING, SENSOR FUSION, AND TARGET RECOGNITION IX, 2000, 4052 : 298 - 308
  • [36] Fast complex adaptive spline neural networks for digital signal processing
    Uncini, A
    Capparelli, F
    Piazza, F
    [J]. IEEE WORLD CONGRESS ON COMPUTATIONAL INTELLIGENCE, 1998, : 903 - 908
  • [37] Training fast mixed-signal neural networks for data classification
    Hohmann, SG
    Fieres, J
    Meier, K
    Schemmel, J
    Schmitz, T
    Schürmann, F
    [J]. 2004 IEEE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1-4, PROCEEDINGS, 2004, : 2647 - 2652
  • [38] Excitation-Inhibition Balanced Neural Networks for Fast Signal Detection
    Tian, Gengshuo
    Li, Shangyang
    Huang, Tiejun
    Wu, Si
    [J]. FRONTIERS IN COMPUTATIONAL NEUROSCIENCE, 2020, 14
  • [39] Benchmarking Audio Signal Representation Techniques for Classification with Convolutional Neural Networks
    Sharan, Roneel, V
    Xiong, Hao
    Berkovsky, Shlomo
    [J]. SENSORS, 2021, 21 (10)
  • [40] Learning in dynamic neural networks using signal flow graphs
    Osowski, S
    Cichocki, A
    [J]. INTERNATIONAL JOURNAL OF CIRCUIT THEORY AND APPLICATIONS, 1999, 27 (02) : 209 - 228