Stability of Mindlin-Timoshenko plate with nonlinear boundary damping and boundary sources

被引:2
|
作者
Pei, Pei [1 ]
机构
[1] Otterbein Univ, Dept Math Sci, Westerville, OH 43081 USA
关键词
Mindlin-Timoshenko plate; Boundary damping; Boundary sources; Potential well; Stability; Decay rates; POTENTIAL WELL THEORY; STRUCTURAL ACOUSTIC MODEL; WAVE-EQUATION; GLOBAL EXISTENCE; SOURCE TERMS; POSEDNESS; CONVERGENCE; SYSTEM; DECAY; BEAM;
D O I
10.1016/j.jmaa.2016.11.077
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Presented here is a study of long-term behavior of Mindlin-Timoshenko (RMT) plate systems, focusing on the interplay between nonlinear viscous boundary damping and boundary source terms. This work complements [28: which established local well-posedness of this problem, and global well-posedness when the boundary damping dominates the boundary sources (in an appropriate sense). The current paper develops the potential well theory for the RMT system: global existence for potential well solutions without restricting the boundary source exponents, and explicit energy decay rates dependent on the boundary damping exponents. This work along with-[26-28] provides the fundamental well-posedness and stability theory for MT plates under the interplay of damping and source terms acting either in the interior or on the boundary of the plate. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:1467 / 1488
页数:22
相关论文
共 50 条
  • [31] Asymptotic limits and stabilization for the 1D nonlinear Mindlin-Timoshenko system
    F. D. Araruna
    P. Braz E Silva
    E. Zuazua
    Journal of Systems Science and Complexity, 2010, 23 : 414 - 430
  • [32] ASYMPTOTIC LIMITS AND STABILIZATION FOR THE 1D NONLINEAR MINDLIN-TIMOSHENKO SYSTEM
    F.D.ARARUNA
    P.BRAZ E SILVA
    E.ZUAZUA
    JournalofSystemsScience&Complexity, 2010, 23 (03) : 414 - 430
  • [33] ASYMPTOTIC LIMITS AND STABILIZATION FOR THE 2D NONLINEAR MINDLIN-TIMOSHENKO SYSTEM
    Araruna, Fagner Dias
    Braz E Silva, Pablo
    Queiroz-Souza, Pammella
    ANALYSIS & PDE, 2018, 11 (02): : 351 - 382
  • [34] Polynomial decay rate of a thermoelastic Mindlin–Timoshenko plate model with Dirichlet boundary conditions
    Marié Grobbelaar-Van Dalsen
    Zeitschrift für angewandte Mathematik und Physik, 2015, 66 : 113 - 128
  • [35] Asymptotic limits and stabilization for the 1D nonlinear Mindlin-Timoshenko system
    Araruna, F. D.
    Braz E Silva, P.
    Zuazua, E.
    JOURNAL OF SYSTEMS SCIENCE & COMPLEXITY, 2010, 23 (03) : 414 - 430
  • [36] Stability results of some distributed systems involving Mindlin-Timoshenko plates in the plane
    Bassam, Maya
    Mercier, Denis
    Nicaise, Serge
    Wehbe, Ali
    ZAMM-Zeitschrift fur Angewandte Mathematik und Mechanik, 2016, 96 (08): : 916 - 938
  • [37] The exponential stability region of Timoshenko beam with interior delays and boundary damping
    Xu, Genqi
    Feng, Xiaoyu
    Kwok, Ki Lung
    INTERNATIONAL JOURNAL OF CONTROL, 2017, 90 (08) : 1529 - 1542
  • [38] On the dissipative effect of a magnetic field in a Mindlin-Timoshenko plate model (vol 63, 1047, 2012)
    Grobbelaar-Van Dalsen, Marie
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2017, 68 (06):
  • [39] Dynamics of nonlinear Reissner-Mindlin-Timoshenko plate systems
    Feng, B.
    Freitas, M. M.
    Costa, A. L. C.
    Santos, M. L.
    MATHEMATISCHE NACHRICHTEN, 2024, 297 (01) : 284 - 301
  • [40] A Timoshenko beam with tip body and boundary damping
    Zietsman, L
    van Rensburg, NFJ
    van der Merwe, AJ
    WAVE MOTION, 2004, 39 (03) : 199 - 211