Equivariant embeddings of strongly pseudoconvex Cauchy-Riemann manifolds

被引:1
|
作者
Fritsch, Kevin [1 ]
Heinzner, Peter [1 ]
机构
[1] Ruhr Univ, Bochum, Germany
关键词
LEVI PROBLEM;
D O I
10.1007/s00229-021-01291-w
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let X be a CR manifold with transversal, proper CR action of a Lie group G. We show that the quotient X/G is a complex space such that the quotient map is a CR map. Moreover the quotient is universal, i.e. every invariant CR map into a complex manifold factorizes uniquely over a holomorphic map on X/G. We then use this result and complex geometry to prove an embedding theorem for (non-compact) strongly pseudoconvex CR manifolds with transversal G (sic) S-1-action. The methods of the proof are applied to obtain a projective embedding theorem for compact CR manifolds.
引用
收藏
页码:137 / 163
页数:27
相关论文
共 50 条
  • [32] GENERALISED CAUCHY-RIEMANN LIGHTLIKE SUBMANIFOLDS OF INDEFINITE COSYMPLECTIC MANIFOLDS
    Gupta, R. S.
    Upadhyay, A.
    Sharfuddin, A.
    ANALELE STIINTIFICE ALE UNIVERSITATII AL I CUZA DIN IASI-SERIE NOUA-MATEMATICA, 2012, 58 (02): : 381 - 394
  • [33] Generalized Cauchy-Riemann lightlike submanifolds of indefinite Sasakian manifolds
    Duggal, K. L.
    Sahin, B.
    ACTA MATHEMATICA HUNGARICA, 2009, 122 (1-2) : 45 - 58
  • [34] Generalised Cauchy-Riemann Lightlike Submanifolds of Indefinite Kenmotsu Manifolds
    Gupta, Ram Shankar
    Sharfuddin, A.
    NOTE DI MATEMATICA, 2010, 30 (02): : 49 - 59
  • [35] Generalized Cauchy-Riemann lightlike submanifolds of indefinite Sasakian manifolds
    K. L. Duggal
    B. Sahin
    Acta Mathematica Hungarica, 2009, 122 : 45 - 58
  • [36] Covariant Cauchy-Riemann operators and higher Laplacians on Kahler manifolds
    Englis, M
    Peetre, J
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1996, 478 : 17 - 56
  • [37] CAUCHY-RIEMANN OPERATOR
    EBERLEIN, WF
    AMERICAN JOURNAL OF PHYSICS, 1967, 35 (01) : 53 - &
  • [38] Cauchy-Riemann beams
    Moya-Cessa, H. M.
    Ramos-Prieto, I.
    Sanchez-de-la-Llave, D.
    Ruiz, U.
    Arrizon, V.
    Soto-Eguibar, F.
    PHYSICAL REVIEW A, 2024, 109 (04)
  • [39] STRONGLY PSEUDOCONVEX MANIFOLDS AND STRONGLY PSEUDOCONVEX DOMAINS
    NAKANO, S
    OHSAWA, T
    PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 1984, 20 (04) : 705 - 715
  • [40] Torus Equivariant Szegő Kernel Asymptotics on Strongly Pseudoconvex CR Manifolds
    Hendrik Herrmann
    Chin-Yu Hsiao
    Xiaoshan Li
    Acta Mathematica Vietnamica, 2020, 45 : 113 - 135