Learning Human-Object Interaction Detection using Interaction Points

被引:148
|
作者
Wang, Tiancai [1 ]
Yang, Tong [1 ]
Danelljan, Martin [2 ]
Khan, Fahad Shahbaz [3 ,4 ]
Zhang, Xiangyu [1 ]
Sun, Jian [1 ]
机构
[1] MEGVII Technol, Beijing, Peoples R China
[2] Swiss Fed Inst Technol, Zurich, Switzerland
[3] IIAI, Abu Dhabi, U Arab Emirates
[4] Linkoping Univ, Linkoping, Sweden
关键词
D O I
10.1109/CVPR42600.2020.00417
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Understanding interactions between humans and objects is one of the fundamental problems in visual classification and an essential step towards detailed scene understanding. Human-object interaction (HOI) detection strives to localize both the human and an object as well as the identification of complex interactions between them. Most existing HOI detection approaches are instance-centric where interactions between all possible human-object pairs are predicted based on appearance features and coarse spatial information. We argue that appearance features alone are insufficient to capture complex human-object interactions. In this paper, we therefore propose a novel fully-convolutional approach that directly detects the interactions between human-object pairs. Our network predicts interaction points, which directly localize and classify the interaction. Paired with the densely predicted interaction vectors, the interactions are associated with human and object detections to obtain final predictions. To the best of our knowledge, we are the first to propose an approach where HOI detection is posed as a keypoint detection and grouping problem. Experiments are performed on two popular benchmarks: V-COCO and HICO-DET. Our approach sets a new state-of-the-art on both datasets. Code is available at https: //github.com/vaes1/IP-Net.
引用
收藏
页码:4115 / 4124
页数:10
相关论文
共 50 条
  • [21] Neural-Logic Human-Object Interaction Detection
    Li, Liulei
    Wei, Jianan
    Wang, Wenguan
    Yang, Yi
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [22] Parallel disentangling network for human-object interaction detection
    Cheng, Yamin
    Duan, Hancong
    Wang, Chen
    Chen, Zhijun
    PATTERN RECOGNITION, 2024, 146
  • [23] Transferable Interactiveness Knowledge for Human-Object Interaction Detection
    Li, Yong-Lu
    Zhou, Siyuan
    Huang, Xijie
    Xu, Liang
    Ma, Ze
    Fang, Hao-Shu
    Wang, Yan-Feng
    Lu, Cewu
    2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 3580 - 3589
  • [24] Human-Object Interaction Detection Based on Star Graph
    Cai, Shuang
    Ma, Shiwei
    Gu, Dongzhou
    Wang, Chang
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2022, 36 (09)
  • [25] Structured LSTM for Human-Object Interaction Detection and Anticipation
    Anh Minh Truong
    Yoshitaka, Atsuo
    2017 14TH IEEE INTERNATIONAL CONFERENCE ON ADVANCED VIDEO AND SIGNAL BASED SURVEILLANCE (AVSS), 2017,
  • [26] Spatial-Net for Human-Object Interaction Detection
    Mansour, Ahmed E.
    Mohammed, Ammar
    Elsayed, Hussein Abd El Atty
    Elramly, Salwa
    IEEE ACCESS, 2022, 10 : 88920 - 88931
  • [27] Deep Contextual Attention for Human-Object Interaction Detection
    Wang, Tiancai
    Anwer, Rao Muhammad
    Khan, Muhammad Haris
    Khan, Fahad Shahbaz
    Pang, Yanwei
    Shao, Ling
    Laaksonen, Jorma
    2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 5693 - 5701
  • [28] Spatial-Net for Human-Object Interaction Detection
    Mansour, Ahmed E.
    Mohammed, Ammar
    Elsayed, Hussein Abd El Atty
    Elramly, Salwa
    IEEE Access, 2022, 10 : 88920 - 88931
  • [29] Human-Object Interaction Detection via Disentangled Transformer
    Zhou, Desen
    Liu, Zhichao
    Wang, Jian
    Wang, Leshan
    Hu, Tao
    Ding, Errui
    Wang, Jingdong
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 19546 - 19555
  • [30] Human-Object Interaction Detection: A Survey of Deep Learning-Based Methods
    Li, Fang
    Wang, Shunli
    Wang, Shuaiping
    Zhang, Lihua
    ARTIFICIAL INTELLIGENCE, CICAI 2022, PT I, 2022, 13604 : 441 - 452