Extracellular Iron Biomineralization by Photoautotrophic Iron-Oxidizing Bacteria

被引:142
|
作者
Miot, Jennyfer [1 ,2 ,3 ]
Benzerara, Karim [1 ,2 ,3 ]
Obst, Martin [4 ,5 ]
Kappler, Andreas [5 ]
Hegler, Florian [5 ]
Schaedler, Sebastian [5 ]
Bouchez, Camille [1 ,2 ,3 ]
Guyot, Francois [1 ,2 ,3 ]
Morin, Guillaume [1 ,2 ,3 ]
机构
[1] Univ Paris 06, CNRS, Inst Mineral & Phys Milieux Condenses, UMR 7590, Paris, France
[2] Univ Paris 07, CNRS, Inst Mineral & Phys Milieux Condenses, UMR 7590, Paris, France
[3] IMPMC, Paris, France
[4] McMaster Univ, BIMR, Hamilton & Canadian Light Source, Saskatoon, SK, Canada
[5] Univ Tubingen, Ctr Appl Geosci, D-72076 Tubingen, Germany
基金
加拿大自然科学与工程研究理事会;
关键词
PHOTOTROPHIC FE(II) OXIDATION; NITRATE-REDUCING BACTERIA; FERROUS IRON; SPECTROSCOPY; OPERON;
D O I
10.1128/AEM.00490-09
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Iron oxidation at neutral pH by the phototrophic anaerobic iron-oxidizing bacterium Rhodobacter sp. strain SW2 leads to the formation of iron-rich minerals. These minerals consist mainly of nano-goethite (alpha-FeOOH), which precipitates exclusively outside cells, mostly on polymer fibers emerging from the cells. Scanning transmission X-ray microscopy analyses performed at the C K-edge suggest that these fibers are composed of a mixture of lipids and polysaccharides or of lipopolysaccharides. The iron and the organic carbon contents of these fibers are linearly correlated at the 25-nm scale, which in addition to their texture suggests that these fibers act as a template for mineral precipitation, followed by limited crystal growth. Moreover, we evidence a gradient of the iron oxidation state along the mineralized fibers at the submicrometer scale. Fe minerals on these fibers contain a higher proportion of Fe(III) at cell contact, and the proportion of Fe(II) increases at a distance from the cells. All together, these results demonstrate the primordial role of organic polymers in iron biomineralization and provide first evidence for the existence of a redox gradient around these nonencrusting, Fe-oxidizing bacteria.
引用
收藏
页码:5586 / 5591
页数:6
相关论文
共 50 条
  • [31] Carbon isotope fractionation by circumneutral iron-oxidizing bacteria
    Kennedy, C. B.
    Gault, A. G.
    Fortin, D.
    Clark, I. D.
    Pedersen, K.
    Scott, S. D.
    Ferris, F. G.
    GEOLOGY, 2010, 38 (12) : 1087 - 1090
  • [32] THE POTENTIAL FOR DIAZOTROPHY IN IRON-OXIDIZING AND SULFUR-OXIDIZING ACIDOPHILIC BACTERIA
    NORRIS, PR
    MURRELL, JC
    HINSON, D
    ARCHIVES OF MICROBIOLOGY, 1995, 164 (04) : 294 - 300
  • [33] Oxidation of marcasite and pyrite by iron-oxidizing bacteria and archaea
    Wang, Hongmei
    Bigharn, Jerry A.
    Tuovinen, Olli H.
    HYDROMETALLURGY, 2007, 88 (1-4) : 127 - 131
  • [34] The iron-oxidizing proteobacteria
    Hedrich, Sabrina
    Schloemann, Michael
    Johnson, D. Barrie
    MICROBIOLOGY-SGM, 2011, 157 : 1551 - 1564
  • [35] EFFECTS OF ELEVATED PRESSURES ON IRON-OXIDIZING AND SULFUR-OXIDIZING BACTERIA
    DAVIDSON, MS
    TORMA, AE
    BRIERLEY, JA
    BRIERLEY, CL
    BIOTECHNOLOGY AND BIOENGINEERING, 1981, : 603 - 618
  • [36] APPLICATION OF IRON-OXIDIZING BACTERIA TO EXTRACTIVE METALLURGY.
    Sonta, Hiromi
    Shiratori, Toshikazu
    Minoura, Jun
    Metallurgical Review of MMIJ (Mining and Metallurgical Institute of Japan), 1986, 3 (01): : 158 - 168
  • [37] ATP requirements for growth and maintenance of iron-oxidizing bacteria
    Mignone, C
    Donati, ER
    BIOCHEMICAL ENGINEERING JOURNAL, 2004, 18 (03) : 211 - 216
  • [38] BIOLOGICAL CHEMISTRY Iron-oxidizing bacteria found on shipwreck
    Remmel, Ariana
    CHEMICAL & ENGINEERING NEWS, 2020, 98 (33) : 9 - 9
  • [39] Enumeration of iron-oxidizing bacteria by the membrane filter technique
    B. M. Escobar
    I. R. Godoy
    World Journal of Microbiology and Biotechnology, 2001, 17 : 395 - 397
  • [40] Laboratory experiments on the weathering of iron meteorites and carbonaceous chondrites by iron-oxidizing bacteria
    Gronstal, Aaron
    Pearson, Victoria
    Kappler, Andreas
    Dooris, Craig
    Anand, Mahesh
    Poitrasson, Franck
    Kee, Terence P.
    Cockell, Charles S.
    METEORITICS & PLANETARY SCIENCE, 2009, 44 (02) : 233 - 247