Effective operators from exact many-body renormalization

被引:32
|
作者
Lisetskiy, A. F. [1 ,2 ]
Kruse, M. K. G. [1 ]
Barrett, B. R. [1 ]
Navratil, P. [3 ]
Stetcu, I. [4 ]
Vary, J. P. [5 ]
机构
[1] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA
[2] Michigan State Univ, Natl Superconducting Cyclotron Lab, E Lansing, MI 48824 USA
[3] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA
[4] Univ Washington, Dept Phys, Seattle, WA 98195 USA
[5] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA
来源
PHYSICAL REVIEW C | 2009年 / 80卷 / 02期
关键词
SHELL-MODEL;
D O I
10.1103/PhysRevC.80.024315
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
We construct effective two-body Hamiltonians and E2 operators for the p shell by performing 16h Omega ab initio no-core shell model (NCSM) calculations for A=5 and A=6 nuclei and explicitly projecting the many-body Hamiltonians and E2 operator onto the 0h Omega space. We then separate the effective E2 operator into one-body and two-body contributions employing the two-body valence cluster approximation. We analyze the convergence of proton and neutron valence one-body contributions with increasing model space size and explore the role of valence two-body contributions. We show that the constructed effective E2 operator can be parametrized in terms of one-body effective charges giving a good estimate of the NCSM result for heavier p-shell nuclei.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] A driven similarity renormalization group approach to quantum many-body problems
    Evangelista, Francesco A.
    JOURNAL OF CHEMICAL PHYSICS, 2014, 141 (05):
  • [42] RENORMALIZATION IN CLASSICAL MECHANICS AND MANY-BODY QUANTUM-FIELD THEORY
    FELDMAN, J
    TRUBOWITZ, E
    JOURNAL D ANALYSE MATHEMATIQUE, 1992, 58 : 213 - 247
  • [43] Fixed Points of the Similarity Renormalization Group and the Nuclear Many-Body Problem
    Ruiz Arriola, E.
    Szpigel, S.
    Timoteo, V. S.
    FEW-BODY SYSTEMS, 2014, 55 (8-10) : 971 - 975
  • [44] Fixed Points of the Similarity Renormalization Group and the Nuclear Many-Body Problem
    E. Ruiz Arriola
    S. Szpigel
    V. S. Timóteo
    Few-Body Systems, 2014, 55 : 971 - 975
  • [45] The exact realisation of the Lanczos method for a quantum many-body system
    Witte, NS
    PHYSICS LETTERS A, 1999, 254 (1-2) : 18 - 23
  • [46] Hydrodynamic approach to many-body systems: Exact conservation laws
    Narozhny, Boris N.
    ANNALS OF PHYSICS, 2023, 454
  • [47] Exact solution of a percolation analog for the many-body localization transition
    Roy, Sthitadhi
    Logan, David E.
    Chalker, J. T.
    PHYSICAL REVIEW B, 2019, 99 (22)
  • [48] Polynomially Filtered Exact Diagonalization Approach to Many-Body Localization
    Sierant, Piotr
    Lewenstein, Maciej
    Zakrzewski, Jakub
    PHYSICAL REVIEW LETTERS, 2020, 125 (15)
  • [49] The neatest many-body problem amenable to exact treatments (a "goldfish"?)
    Calogero, F
    PHYSICA D, 2001, 152 : 78 - 84
  • [50] Exact classical stochastic representations of the many-body quantum dynamics
    Polyakov, E. A.
    Vorontsov-Velyaminov, P. N.
    NANOSYSTEMS-PHYSICS CHEMISTRY MATHEMATICS, 2015, 6 (04): : 501 - 512