Effective operators from exact many-body renormalization

被引:31
|
作者
Lisetskiy, A. F. [1 ,2 ]
Kruse, M. K. G. [1 ]
Barrett, B. R. [1 ]
Navratil, P. [3 ]
Stetcu, I. [4 ]
Vary, J. P. [5 ]
机构
[1] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA
[2] Michigan State Univ, Natl Superconducting Cyclotron Lab, E Lansing, MI 48824 USA
[3] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA
[4] Univ Washington, Dept Phys, Seattle, WA 98195 USA
[5] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA
来源
PHYSICAL REVIEW C | 2009年 / 80卷 / 02期
关键词
SHELL-MODEL;
D O I
10.1103/PhysRevC.80.024315
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
We construct effective two-body Hamiltonians and E2 operators for the p shell by performing 16h Omega ab initio no-core shell model (NCSM) calculations for A=5 and A=6 nuclei and explicitly projecting the many-body Hamiltonians and E2 operator onto the 0h Omega space. We then separate the effective E2 operator into one-body and two-body contributions employing the two-body valence cluster approximation. We analyze the convergence of proton and neutron valence one-body contributions with increasing model space size and explore the role of valence two-body contributions. We show that the constructed effective E2 operator can be parametrized in terms of one-body effective charges giving a good estimate of the NCSM result for heavier p-shell nuclei.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Many-body renormalization of the electron effective mass of InSe
    Li, Wenbin
    Giustino, Feliciano
    PHYSICAL REVIEW B, 2020, 101 (03)
  • [2] Many-body localization and transition by density matrix renormalization group and exact diagonalization studies
    Lim, S. P.
    Sheng, D. N.
    PHYSICAL REVIEW B, 2016, 94 (04)
  • [3] EFFECTIVE MANY-BODY INTERACTIONS IN EXACT VALENCE-SHELL HAMILTONIANS
    SHEPPARD, MG
    FREED, KF
    CHEMICAL PHYSICS LETTERS, 1981, 82 (02) : 235 - 241
  • [4] Many-Body Renormalization of the Minimal Conductivity in Graphene
    Guinea, F.
    Katsnelson, M. I.
    PHYSICAL REVIEW LETTERS, 2014, 112 (11)
  • [5] Renormalization of graphene bands by many-body interactions
    Bostwick, Aaron
    Ohta, Taisuke
    McChesney, Jessica L.
    Seyller, Thomas
    Horn, Karsten
    Rotenberg, Eli
    SOLID STATE COMMUNICATIONS, 2007, 143 (1-2) : 63 - 71
  • [6] DECOMPOSITION OF MANY-BODY SCHRODINGER OPERATORS
    BALSLEV, E
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1977, 52 (02) : 127 - 146
  • [7] Construction of exact constants of motion and effective models for many-body localized systems
    Goihl, M.
    Gluza, M.
    Krumnow, C.
    Eisert, J.
    PHYSICAL REVIEW B, 2018, 97 (13)
  • [8] Multimagnon quantum many-body scars from tensor operators
    Tang, Long-Hin
    O'Dea, Nicholas
    Chandran, Anushya
    PHYSICAL REVIEW RESEARCH, 2022, 4 (04):
  • [9] An exact entropy expression for a many-body problem
    Kita, T
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1999, 68 (11) : 3740 - 3741
  • [10] Escaping many-body localization in an exact eigenstate
    Iversen, Michael
    Srivatsa, N. S.
    Nielsen, Anne E. B.
    PHYSICAL REVIEW B, 2022, 106 (21)