Generalized Fourier Transform and Maslov's canonical operator

被引:0
|
作者
Tulovsky, V [1 ]
机构
[1] St Johns Univ, Dept Math Comp & Nat Sci, Staten Isl, NY 10301 USA
关键词
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The paper represents an attempt to create a unified framework for PDE with constant and variable coefficients. For this purpose, a complete system of eigenfunctions is constructed, which plays the same role as exponential functions. Using these eigenfunctions, we introduce an analog of the Fourier Transform and solve equations with variable coefficients in the same way as equations with constant coefficients.
引用
收藏
页码:331 / 352
页数:22
相关论文
共 50 条
  • [1] Maslov’s canonical operator in abstract spaces
    O. Yu. Shvedov
    [J]. Mathematical Notes, 1999, 65 : 365 - 380
  • [2] Maslov's canonical operator in abstract spaces
    Shvedov, OY
    [J]. MATHEMATICAL NOTES, 1999, 65 (3-4) : 365 - 380
  • [3] Maslov's canonical operator for degenerate hyperbolic equations
    Nazaikinskii, V. E.
    [J]. RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS, 2014, 21 (02) : 289 - +
  • [4] Maslov’s canonical operator for degenerate hyperbolic equations
    V. E. Nazaikinskii
    [J]. Russian Journal of Mathematical Physics, 2014, 21 : 289 - 290
  • [5] Maslov’s canonical operator in arbitrary coordinates on the Lagrangian manifold
    S. Yu. Dobrokhotov
    V. E. Nazaikinskii
    A. I. Shafarevich
    [J]. Doklady Mathematics, 2016, 93 : 99 - 102
  • [6] Maslov's canonical operator in arbitrary coordinates on the Lagrangian manifold
    Dobrokhotov, S. Yu.
    Nazaikinskii, V. E.
    Shafarevich, A. I.
    [J]. DOKLADY MATHEMATICS, 2016, 93 (01) : 99 - 102
  • [7] FOURIER-TRANSFORM AND MASLOV INDEX
    CRUMEYROLLE, A
    [J]. COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1978, 287 (04): : 245 - 247
  • [8] Representation of Bessel functions by the Maslov canonical operator
    Dobrokhotov, S. Yu
    Minenkov, D. S.
    Nazaikinskii, V. E.
    [J]. THEORETICAL AND MATHEMATICAL PHYSICS, 2021, 208 (02) : 1018 - 1037
  • [9] Representation of Bessel functions by the Maslov canonical operator
    S. Yu. Dobrokhotov
    D. S. Minenkov
    V. E. Nazaikinskii
    [J]. Theoretical and Mathematical Physics, 2021, 208 : 1018 - 1037
  • [10] Generalized wavelet transform based on the convolution operator in the linear canonical transform domain
    Wei, Deyun
    Li, Yuan-Min
    [J]. OPTIK, 2014, 125 (16): : 4491 - 4496