Maslov's canonical operator in abstract spaces

被引:4
|
作者
Shvedov, OY [1 ]
机构
[1] Moscow MV Lomonosov State Univ, Moscow 117234, Russia
关键词
semiclassical approximation; complex germ; wave packet; Hilbert bundle; asymptotics; phase space; abstract canonical operator;
D O I
10.1007/BF02675080
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Recently, a number of new methods for constructing asymptotic solutions to various evolution equations has been developed. These asymptotic solutions are expressed at each instant of time via an element y of some smooth manifold y and an element f of some Hilbert space F-y. We study general properties of the mapping that assigns an asymptotic formula to the pair (y, f).
引用
收藏
页码:365 / 380
页数:16
相关论文
共 50 条
  • [1] Maslov’s canonical operator in abstract spaces
    O. Yu. Shvedov
    [J]. Mathematical Notes, 1999, 65 : 365 - 380
  • [2] Maslov's canonical operator for degenerate hyperbolic equations
    Nazaikinskii, V. E.
    [J]. RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS, 2014, 21 (02) : 289 - +
  • [3] Maslov’s canonical operator for degenerate hyperbolic equations
    V. E. Nazaikinskii
    [J]. Russian Journal of Mathematical Physics, 2014, 21 : 289 - 290
  • [4] Generalized Fourier Transform and Maslov's canonical operator
    Tulovsky, V
    [J]. RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS, 1999, 6 (03) : 331 - 352
  • [5] Maslov’s canonical operator in arbitrary coordinates on the Lagrangian manifold
    S. Yu. Dobrokhotov
    V. E. Nazaikinskii
    A. I. Shafarevich
    [J]. Doklady Mathematics, 2016, 93 : 99 - 102
  • [6] Maslov's canonical operator in arbitrary coordinates on the Lagrangian manifold
    Dobrokhotov, S. Yu.
    Nazaikinskii, V. E.
    Shafarevich, A. I.
    [J]. DOKLADY MATHEMATICS, 2016, 93 (01) : 99 - 102
  • [7] Complex Maslov germs in abstract spaces
    Shvedov, OY
    [J]. SBORNIK MATHEMATICS, 1999, 190 (9-10) : 1523 - 1557
  • [8] Representation of Bessel functions by the Maslov canonical operator
    Dobrokhotov, S. Yu
    Minenkov, D. S.
    Nazaikinskii, V. E.
    [J]. THEORETICAL AND MATHEMATICAL PHYSICS, 2021, 208 (02) : 1018 - 1037
  • [9] Representation of Bessel functions by the Maslov canonical operator
    S. Yu. Dobrokhotov
    D. S. Minenkov
    V. E. Nazaikinskii
    [J]. Theoretical and Mathematical Physics, 2021, 208 : 1018 - 1037
  • [10] Representations of rapidly decaying functions by the Maslov canonical operator
    Dobrokhotov, S. Yu.
    Tirozzi, B.
    Shafarevich, A. I.
    [J]. MATHEMATICAL NOTES, 2007, 82 (5-6) : 713 - 717