Critical dynamics of nonperiodic Ising chains

被引:11
|
作者
Tong, PQ [1 ]
机构
[1] MCMASTER UNIV,DEPT PHYS & ASTRON,HAMILTON,ON L8S 4L8,CANADA
来源
PHYSICAL REVIEW E | 1997年 / 56卷 / 02期
关键词
D O I
10.1103/PhysRevE.56.1371
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The critical dynamics of the nonperiodic ferromagnetic Ising chains with two different coupling constants (J(1)>J(2)>0) arranged in nonperiodic sequences are studied by trace map method. For Glauber dynamics, it is found that the dynamical critical exponent z = 1 + J(1)/J(2) for the Fibonacci, general Fibonacci (e.g., silver-mean, copper-mean), and period-doubling ferromagnetic Ising chains. The applicability of the trace map method and the origin of the nonuniversality are briefly discussed.
引用
收藏
页码:1371 / 1378
页数:8
相关论文
共 50 条
  • [21] Random field Ising chains and neural networks with synchronous dynamics
    Skantzos, NS
    Coolen, ACC
    DISORDERED AND COMPLEX SYSTEMS, 2001, 553 : 101 - 106
  • [22] SOLITON DYNAMICS IN QUANTUM ISING-LIKE ANTIFERROMAGNETIC CHAINS
    NAGLER, SE
    BUYERS, WJL
    ARMSTRONG, RL
    BRIAT, B
    JOURNAL OF APPLIED PHYSICS, 1984, 55 (06) : 1856 - 1859
  • [23] Transfer operator analysis of the parallel dynamics of disordered Ising chains
    Coolen, Anthony C. C.
    Takeda, Koujin
    PHILOSOPHICAL MAGAZINE, 2012, 92 (1-3) : 64 - 77
  • [24] SURFACE MAGNETIZATION AND CRITICAL-BEHAVIOR OF APERIODIC ISING QUANTUM CHAINS
    TURBAN, L
    IGLOI, F
    BERCHE, B
    PHYSICAL REVIEW B, 1994, 49 (18): : 12695 - 12702
  • [25] CRITICAL DYNAMICS OF KINETIC ISING MODELS IN 4 DIMENSIONS
    SIGGIA, ED
    PHYSICAL REVIEW B, 1975, 11 (11): : 4736 - 4736
  • [26] CRITICAL-DYNAMICS OF FINITE ISING-MODEL
    DAURIAC, JCA
    MAYNARD, R
    RAMMAL, R
    JOURNAL OF STATISTICAL PHYSICS, 1982, 28 (02) : 307 - 323
  • [27] Damage spreading and critical exponents for model 'A' ising dynamics
    Physica A: Statistical and Theoretical Physics, 1995, 214 (04):
  • [28] DISCUSSION OF DYNAMICS OF ISING MODEL NEAR CRITICAL POINT
    HALPERIN, BI
    SUZUKI, M
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1969, S 26 : 156 - &
  • [29] Nonequilibrium critical dynamics of the triangular antiferromagnetic Ising model
    Kim, E
    Kim, B
    Lee, SJ
    PHYSICAL REVIEW E, 2003, 68 (06):
  • [30] Critical dynamics in reversible forced pendulum chains
    Pham, CT
    Brachet, M
    INSTABILITIES AND NONEQUILIBRIUM STRUCTURES IX, 2004, 9 : 101 - 109