Independent double Roman domination in graphs

被引:10
|
作者
Maimani, H. R. [1 ]
Momeni, M. [1 ]
Mahid, F. Rahimi [1 ]
Sheikholeslami, S. M. [2 ]
机构
[1] Shahid Rajaee Teacher Training Univ, Dept Basic Sci, POB 16783-163, Tehran, Iran
[2] Azarbaijan Shahid Madani Univ, Dept Math, Tabriz, Iran
关键词
Independent double Roman domination; independent 3-rainbow domination; independent Roman domination; 05C69;
D O I
10.1016/j.akcej.2020.02.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For a graph G = (V,E), a double Roman dominating function (DRDF)f:V -> {0,1,2,3} has the property that for every vertex v is an element of V with f(v)=0, either there exists a vertex u is an element of N(v), with f(u)=3, or at least two neighbors x,y is an element of N(v) having f(x) = f(y)=2, and every vertex with value 1 under f has at least a neighbor with value 2 or 3. The weight of a DRDF is the sum f(V)=<mml:munder>Sigma v is an element of V</mml:munder>f(v). A DRDF f is called independent if the set of vertices with positive weight under f, is an independent set. The independent double Roman domination number idR(G) is the minimum weight of an independent double Roman dominating function on G. In this paper, we show that for every graph G of order n, ir3(G)-idR(G)<= n/5 and i(G)+iR(G)-idR(G)<= n/4, where ir3(G),iR(G) and i(G) are the independent 3-rainbow domination, independent Roman domination and independent domination numbers, respectively. Moreover, we prove that for any tree G, idR(G)>= ir3(G).
引用
收藏
页码:905 / 910
页数:6
相关论文
共 50 条
  • [31] On the Outer-Independent Roman Domination in Graphs
    Martinez, Abel Cabrera
    Garcia, Suitberto Cabrera
    Carrion Garcia, Andres
    Grisales del Rio, Angela Maria
    SYMMETRY-BASEL, 2020, 12 (11): : 1 - 12
  • [32] A NOTE ON THE INDEPENDENT ROMAN DOMINATION IN UNICYCLIC GRAPHS
    Chellali, Mustapha
    Rad, Nader Jafari
    OPUSCULA MATHEMATICA, 2012, 32 (04) : 715 - 718
  • [33] A Short Note on Double Roman Domination in Graphs
    Omar, Abdelhak
    Bouchou, Ahmed
    COMMUNICATIONS IN COMBINATORICS AND OPTIMIZATION, 2024,
  • [34] A Note on the Double Roman Domination Number of Graphs
    Chen, Xue-gang
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2020, 70 (01) : 205 - 212
  • [35] Discharging Approach for Double Roman Domination in Graphs
    Shao, Zehui
    Wu, Pu
    Jiang, Huiqin
    Li, Zepeng
    Zerovnik, Janez
    Zhang, Xiujun
    IEEE ACCESS, 2018, 6 : 63345 - 63351
  • [36] Critical concept for double Roman domination in graphs
    Nazari-Moghaddam, S.
    Volkmann, L.
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2020, 12 (02)
  • [37] Double Roman Domination in Generalized Petersen Graphs
    Gao, Hong
    Huang, Jiahuan
    Yang, Yuansheng
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2022, 48 (03) : 885 - 894
  • [38] A Note on the Double Roman Domination Number of Graphs
    Xue-gang Chen
    Czechoslovak Mathematical Journal, 2020, 70 : 205 - 212
  • [39] Double Roman Domination in Generalized Petersen Graphs
    Hong Gao
    Jiahuan Huang
    Yuansheng Yang
    Bulletin of the Iranian Mathematical Society, 2022, 48 : 885 - 894
  • [40] Quasi total double Roman domination in graphs
    Kosari, S.
    Babaei, S.
    Amjadi, J.
    Chellali, M.
    Sheikholeslami, S. M.
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2024, 21 (02) : 171 - 180