Cryo_fit: Democratization of flexible fitting for cryo-EM

被引:27
|
作者
Kim, Doo Nam [1 ]
Moriarty, Nigel W. [2 ]
Kirmizialtin, Serdal [3 ]
Afonine, Pavel, V [2 ]
Poon, Billy [2 ]
Sobolev, Oleg, V [2 ]
Adams, Paul D. [2 ,4 ]
Sanbonmatsu, Karissa [1 ,5 ]
机构
[1] Los Alamos Natl Lab, Theoret Biol & Biophys Grp, Los Alamos, NM 87545 USA
[2] Lawrence Berkeley Natl Lab, Mol Biophys & Integrated Bioimaging Div, One Cyclotron Rd, Berkeley, CA USA
[3] New York Univ, Sci Div, Chem Program, Abu Dhabi, U Arab Emirates
[4] Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA
[5] New Mexico Consortium, Los Alamos, NM USA
关键词
Cryo-EM; Molecular dynamics; Flexible fitting; Correlation coefficient; Phenix; ADENYLATE KINASE; TRANSFER-RNA; RESOLUTION; MICROSCOPY; MAPS; MODEL; REFINEMENT; DYNAMICS; VISUALIZATION; VALIDATION;
D O I
10.1016/j.jsb.2019.05.012
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Cryo-electron microscopy (cryo-EM) is becoming a method of choice for describing native conformations of biomolecular complexes at high resolution. The rapid growth of cryo-EM in recent years has created a high demand for automated solutions, both in hardware and software. Flexible fitting of atomic models to three-dimensional (3D) cryo-EM reconstructions by molecular dynamics (MD) simulation is a popular technique but often requires technical expertise in computer simulation. This work introduces cryo_fit, a package for the automatic flexible fitting of atomic models in cryo-EM maps using MD simulation. The package is integrated with the Phenix software suite. The module was designed to automate the multiple steps of MD simulation in a reproducible manner, as well as facilitate refinement and validation through Phenix. Through the use of cryo_fit, scientists with little experience in MD simulation can produce high quality atomic models automatically and better exploit the potential of cryo-EM.
引用
收藏
页码:1 / 6
页数:6
相关论文
共 50 条
  • [41] Bayesian cryo-EM Refinement
    Blau, Christian
    Bock, Lars
    Kutzner, Carsten
    Vaiana, Andrea
    Grubmuller, Helmut
    BIOPHYSICAL JOURNAL, 2015, 108 (02) : 470A - 470A
  • [42] Home source for cryo-EM
    Karia, Dimple
    Koh, Adrian
    Hlavenkova, Zuzana
    Malinsky, Milos
    Dolezal, Vojtech
    Yakushevska, Alevtyna
    Yu, Lingbo
    Kotecha, Abhay
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2021, 77 : C242 - C242
  • [43] Cryo-EM goes atomic
    Rita Strack
    Nature Methods, 2020, 17 : 1175 - 1175
  • [44] Difference mapping Cryo-EM
    Peters, R
    Sikorski, R
    SCIENCE, 1999, 283 (5405) : 1133 - 1133
  • [45] Pushing boundaries of cryo-EM
    Culbertson, Sannie J.
    TRENDS IN BIOCHEMICAL SCIENCES, 2022, 47 (02) : 101 - 102
  • [46] CRYO-EM IN DRUG DISCOVERY
    May, Mike
    Lab Manager, 2023, 18 (08):
  • [47] Cryo-EM strikes gold
    Doerr, Allison
    NATURE METHODS, 2015, 12 (02) : 102 - +
  • [48] Cryo-EM for protein discovery
    Florian Ullrich
    Nature Structural & Molecular Biology, 2021, 28 : 958 - 958
  • [49] Cryo-EM of ATP synthases
    Guo, Hui
    Rubinstein, John L.
    CURRENT OPINION IN STRUCTURAL BIOLOGY, 2018, 52 : 71 - 79
  • [50] Cryo-EM for Small Molecules
    Cabral, Angela
    Cabral, Julia Elise
    Mcnulty, Reginald
    CURRENT PROTOCOLS, 2022, 2 (12):