Study of effects of sleeve grouting defects on the seismic performance of precast concrete shear walls

被引:70
|
作者
Xiao, Shun [1 ]
Wang, Zhuolin [1 ]
Li, Xiangmin [1 ]
Harries, Kent A. [2 ]
Xu, Qingfeng [1 ]
Gao, Rundong [1 ]
机构
[1] Shanghai Res Inst Bldg Sci Co Ltd, Shanghai Key Lab Engn Struct Safety, Shanghai 200032, Peoples R China
[2] Univ Pittsburgh, Dept Civil & Environm Engn, Pittsburgh, PA 15260 USA
关键词
Precast concrete shear wall; Grouted sleeve connector; Grouting defect; Seismic performance; Energy dissipation capacity;
D O I
10.1016/j.engstruct.2020.111833
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Precast concrete wall systems are effective means of resisting seismic forces in many structures. However, their performance is affected by the ability to properly connect elements ? usually with grout sleeves. Grout sleeve connections are known to be susceptible to backflow during grouting resulting in partially grouted or occasionally entirely ungrouted sleeves. In this study an investigation of the impact of sleeve grouting defects on the seismic performance of precast concrete shear walls is presented. Grouting defects of different sizes and at different positions in the walls were intentionally introduced. Reversed cyclic loading tests of precast concrete shear wall specimens and a comparable monolithically cast-in-place concrete shear wall specimen were performed. The defect-free grouted sleeve panels were shown to be equivalent to monolithic cast walls having continuous bars in terms of capacity although, due to the short sleeve embedment, the precast walls are less stiff and therefore demonstrate reduced ductility. Energy dissipation, however is similar and both monolithically cast and precast walls meet the requirements for use as seismic resistant systems. The study showed that grout sleeve defects adversely affect wall behavior ? primarily when the spliced bar is in tension. The impact of defects can be assessed through standard design equations by assuming that the degree of the defect impacts the force the bar can develop. As demonstrated in this study, wall performance becomes an issue of quantifying and predicting defects and their effect, not on the individual bars, but on the wall panel assembly. The panels in this study were dominated by flexural behavior; thus the reduction in panel moment capacity provides a means of differentiating behavior. Panels that maintained at least 92% of their theoretical flexure capacity were mostly indistinguishable from defect-free panels. Noticeable loss of performance was evident at panel capacities of 85% and lower.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] A Comparative Study on Seismic Performance of Precast Shear Walls Designed with Different Variables
    Huang, Wei
    Zhang, Min
    Yang, Zengke
    KSCE JOURNAL OF CIVIL ENGINEERING, 2018, 22 (12) : 4955 - 4963
  • [42] Seismic performance of precast lightweight aggregate concrete shear walls with supplementary V-ties
    Yang, Keun-Hyeok
    Mun, Ju-Hyun
    Kim, Sanghee
    Im, Chae-Rim
    Jung, Yeon-Back
    ENGINEERING STRUCTURES, 2023, 297
  • [43] Seismic performance of precast composite shear walls reinforced by concrete-filled steel tubes
    Wu, Liwei
    Tian, Ying
    Su, Youpo
    Chen, Haibin
    ENGINEERING STRUCTURES, 2018, 162 : 72 - 83
  • [44] Seismic performance of precast concrete double skin shear walls with different vertical connection types
    Jiang, Jiafei
    Luo, Jie
    Xue, Weichen
    Hu, Xiang
    Qin, Duan
    ENGINEERING STRUCTURES, 2021, 245 (245)
  • [45] Experimental study on seismic behavior of precast concrete walls
    Huang, Wei
    Zhang, Min
    Jiang, Yongtao
    Zheng, Yunhan
    Li, Bin
    Jianzhu Jiegou Xuebao/Journal of Building Structures, 2015, 36 (10): : 88 - 95
  • [46] Experimental and numerical investigation of the seismic behaviour of corroded precast concrete piers with grouting sleeve connections
    Guo, Tong
    Yang, Jun
    Liu, Tao
    Liu, Zhongxiang
    STRUCTURE AND INFRASTRUCTURE ENGINEERING, 2023,
  • [47] Influence of internal defects of semi grouted sleeve connections on the seismic performance of precast monolithic concrete columns
    Li, Fanrong
    Abruzzese, Donato
    Milani, Gabriele
    Li, Shengcai
    JOURNAL OF BUILDING ENGINEERING, 2022, 49
  • [48] Experimental Study On Shear Performance of Steel-Concrete Composite Bolted Connectors in Precast Concrete Shear Walls
    Fang, Qiang
    Qiu, Hongxing
    Sun, Jian
    Jiang, Hongbo
    Yang, Yuan
    INTERNATIONAL JOURNAL OF CIVIL ENGINEERING, 2022, 20 (04) : 445 - 459
  • [49] Experimental study on seismic performance of squat precast concrete sandwich shear walls under low axial load ratio
    Zhang, Huadong
    Yuan, Kang
    Zou, Ruiyue
    Zhang, Gang
    Guo, Junlin
    STRUCTURES, 2024, 63
  • [50] SEISMIC RESPONSE OF PRECAST CONCRETE WALLS
    BECKER, JM
    LLORENTE, C
    MUELLER, P
    EARTHQUAKE ENGINEERING & STRUCTURAL DYNAMICS, 1980, 8 (06): : 545 - 564