Antitumor properties of irinotecan-containing nanoparticles prepared using poly(DL-lactic acid) and poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol)

被引:39
|
作者
Onishi, H
Machida, Y
Machida, Y
机构
[1] Hoshi Univ, Dept Drug Delivery Res, Shinagawa Ku, Tokyo 1428501, Japan
[2] Hachioji Digest Organs Hosp, Dept Pharm, Hachioji, Tokyo 1920903, Japan
关键词
nanoparticle; poly(DL-lactic acid); irinotecan; poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene; glycol); antitumor effect; plasma concentration;
D O I
10.1248/bpb.26.116
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Irinotecan-containing nanoparticles (NP) were prepared by coprecipitation with addition of water to acetone solution of poly(DL-lactic acid), poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol) and irinotecan, and subsequent evaporation of organic solvent. NP were purified by gel filtration and used for experiments after condensation by evaporation. The obtained NP showed the drug content of 4.5% (w/w) and the mean particle diameter of 118 nm with the particle diameter distribution between 80-210 nm. When the antitumor effect was examined at a repeated dose of 20 mg irinotecan eq/kg for 3 d (3 X 20 mg/kg) using mice bearing Sarcoma 180 subcutaneously, only NP suppressed tumor growth significantly. After i.v. injection in rats, NP maintained irinotecan plasma concentration longer than CPT-11 aqueous solution. The present nanoparticle formation is suggested as a possibly useful dosage form of irinotecan against solid tumor.
引用
收藏
页码:116 / 119
页数:4
相关论文
共 50 条
  • [31] Tacticity-induced changes in the micellization and degradation of poly(lactic acid)-block-poly(ethylene glycol) copolymers
    Shaver, Michael P.
    Agatemor, Christian
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2013, 245
  • [32] The use of poly(ethylene glycol)-block-poly(lactic acid) derived copolymers for the rapid creation of biomimetic surfaces
    Tessmar, J
    Mikos, A
    Göpferich, A
    BIOMATERIALS, 2003, 24 (24) : 4475 - 4486
  • [33] Poly(ε-caprolactone)-block-poly(ethylene glycol)-block-poly (ε-caprolactone)-based hybrid polymer electrolyte for lithium metal batteries
    Zuo, Cai
    Chen, Gong
    Zhang, Yong
    Gan, Huihui
    Li, Shaoqiao
    Yu, Liping
    Zhou, Xingping
    Xie, Xiaolin
    Xue, Zhigang
    JOURNAL OF MEMBRANE SCIENCE, 2020, 607
  • [34] Properties of poly(ethylene glycol)-grafted poly(lactic acid) plasticized with poly(ethylene glycol)
    Choi, Kyung-Man
    Lim, Sung-Wook
    Choi, Myeon-Cheon
    Han, Dong-Hun
    Ha, Chang-Sik
    MACROMOLECULAR RESEARCH, 2014, 22 (12) : 1312 - 1319
  • [35] Properties of poly(ethylene glycol)-grafted poly(lactic acid) plasticized with poly(ethylene glycol)
    Kyung-Man Choi
    Sung-Wook Lim
    Myeon-Cheon Choi
    Dong-Hun Han
    Chang-Sik Ha
    Macromolecular Research, 2014, 22 : 1312 - 1319
  • [36] Tuning properties of poly(ethylene glycol)-block-poly(simvastatin) copolymers synthesized via triazabicyclodecene
    Asafo-Adjei, Theodora A.
    Dziubla, Thomas D.
    Puleo, David A.
    REACTIVE & FUNCTIONAL POLYMERS, 2017, 119 : 37 - 46
  • [37] Synthesis and micellization of star-shaped poly(ethylene glycol)-block-poly(ε-caprolactone)
    Kim, KH
    Cui, GH
    Lim, HJ
    Huh, J
    Ahn, CH
    Jo, WH
    MACROMOLECULAR CHEMISTRY AND PHYSICS, 2004, 205 (12) : 1684 - 1692
  • [38] Micellization of Poly(ethylene glycol)-block-Poly(caprolactone) in Compressible Near Critical Solvents
    Green, Jade
    Tyrrell, Zachary
    Radosz, Maciej
    JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (39): : 16082 - 16086
  • [39] Novel synthesis of biodegradable star poly(ethylene glycol)-block-poly(lactide) copolymers
    Lemmouchi, Yahia
    Perry, Michael C.
    Amass, Allan J.
    Chakraborty, Khirud
    Schacht, Etienne
    JOURNAL OF POLYMER SCIENCE PART A-POLYMER CHEMISTRY, 2007, 45 (17) : 3966 - 3974