Disorder Identification in Hysteresis Data: Recognition Analysis of the Random-Bond-Random-Field Ising Model
被引:35
|
作者:
Ovchinnikov, O. S.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USAOak Ridge Natl Lab, Oak Ridge, TN 37831 USA
Ovchinnikov, O. S.
[2
]
Jesse, S.
论文数: 0引用数: 0
h-index: 0
机构:
Oak Ridge Natl Lab, Oak Ridge, TN 37831 USAOak Ridge Natl Lab, Oak Ridge, TN 37831 USA
Jesse, S.
[1
]
Bintacchit, P.
论文数: 0引用数: 0
h-index: 0
机构:
Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA
Penn State Univ, Mat Res Inst, University Pk, PA 16802 USAOak Ridge Natl Lab, Oak Ridge, TN 37831 USA
Bintacchit, P.
[3
,4
]
Trolier-McKinstry, S.
论文数: 0引用数: 0
h-index: 0
机构:
Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA
Penn State Univ, Mat Res Inst, University Pk, PA 16802 USAOak Ridge Natl Lab, Oak Ridge, TN 37831 USA
Trolier-McKinstry, S.
[3
,4
]
Kalinin, S. V.
论文数: 0引用数: 0
h-index: 0
机构:
Oak Ridge Natl Lab, Oak Ridge, TN 37831 USAOak Ridge Natl Lab, Oak Ridge, TN 37831 USA
Hysteresis - Ising model - Principal component analysis;
D O I:
10.1103/PhysRevLett.103.157203
中图分类号:
O4 [物理学];
学科分类号:
0702 ;
摘要:
An approach for the direct identification of disorder type and strength in physical systems based on recognition analysis of hysteresis loop shape is developed. A large number of theoretical examples uniformly distributed in the parameter space of the system is generated and is decorrelated using principal component analysis (PCA). The PCA components are used to train a feed-forward neural network using the model parameters as targets. The trained network is used to analyze hysteresis loops for the investigated system. The approach is demonstrated using a 2D random-bond-random-field Ising model, and polarization switching in polycrystalline ferroelectric capacitors.