LOCAL WELL-POSEDNESS FOR THE KLEIN-GORDON-ZAKHAROV SYSTEM IN 3D

被引:0
|
作者
Pecher, Hartmut [1 ]
机构
[1] Berg Univ Wuppertal, Fak Math & Nat Wissensch, Gaussstr 20, D-42119 Wuppertal, Germany
关键词
Klein-Gordon-Zakharov; local well-posedness; low regularity; Fourier restriction norm method; bilinear estimates; CAUCHY-PROBLEM;
D O I
10.3934/dcds.2020338
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the Cauchy problem for the Klein-Gordon-Zakharov system in 3D with low regularity data. We lower down the regularity to the critical value with respect to scaling up to the endpoint. The decisive bilinear estimates are proved by means of methods developed by Bejenaru-Herr for the Zakharov system and already applied by Kinoshita to the Klein-Gordon-Zakharov system in 2D.
引用
收藏
页码:1707 / 1736
页数:30
相关论文
共 50 条
  • [41] Small energy scattering for the Klein-Gordon-Zakharov system with radial symmetry
    Guo, Zihua
    Nakanishi, Kenji
    Wang, Shuxia
    MATHEMATICAL RESEARCH LETTERS, 2014, 21 (04) : 733 - 755
  • [42] Well-posedness for a class of generalized Zakharov system
    You, Shujun
    Ning, Xiaoqi
    JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2017, 10 (04): : 1289 - 1302
  • [43] SOME NEW WELL-POSEDNESS RESULTS FOR THE KLEIN-GORDON-SCHRODINGER SYSTEM
    Pecher, Hartmut
    DIFFERENTIAL AND INTEGRAL EQUATIONS, 2012, 25 (1-2) : 117 - 142
  • [44] On global well-posedness and scattering for the massive Dirac-Klein-Gordon system
    Bejenaru, Ioan
    Herr, Sebastian
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2017, 19 (08) : 2445 - 2467
  • [45] On the decay problem for the Zakharov and Klein-Gordon-Zakharov systems in one dimension
    Martinez, Maria E.
    JOURNAL OF EVOLUTION EQUATIONS, 2021, 21 (04) : 3733 - 3763
  • [46] Energy stable schemes for the Klein-Gordon-Zakharov equations
    Guo, Jiaojiao
    Zhuang, Qingqu
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2023, 147 : 150 - 163
  • [47] New solitary waves for the Klein-Gordon-Zakharov equations
    Nestor, Savaissou
    Houwe, Alphonse
    Rezazadeh, Hadi
    Bekir, Ahmet
    Betchewe, Gambo
    Doka, Serge Y.
    MODERN PHYSICS LETTERS B, 2020, 34 (23):
  • [48] Conservative difference methods for the Klein-Gordon-Zakharov equations
    Wang, Tingchun
    Chen, Juan
    Zhang, Luming
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2007, 205 (01) : 430 - 452
  • [49] NOVEL APPROACHES TO FRACTIONAL KLEIN-GORDON-ZAKHAROV EQUATION
    Wang, Kang Le
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2023, 31 (07)
  • [50] GLOBAL SMOOTH SOLUTION FOR THE KLEIN-GORDON-ZAKHAROV EQUATIONS
    GUO, BL
    YUAN, GW
    JOURNAL OF MATHEMATICAL PHYSICS, 1995, 36 (08) : 4119 - 4124