Multifractal analysis of the historic set in non-uniformly hyperbolic systems

被引:1
|
作者
Ma, Guan-zhong [1 ]
Yao, Xiao [2 ]
机构
[1] Anyang Normal Univ, Sch Math & Stat, Anyang 455000, Henan, Peoples R China
[2] Fudan Univ, Shanghai Ctr Math Sci, Shanghai 200433, Peoples R China
关键词
Historic set; Moran set; Non-uniformly hyperbolic; IRREGULAR SETS; POINTS;
D O I
10.1007/s00013-017-1023-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We get the exact Hausdorff dimension of the historic set for ratios of the Birkhoff average in a class of one dimensional non-uniformly hyperbolic dynamical systems.
引用
收藏
页码:405 / 413
页数:9
相关论文
共 50 条
  • [21] LYAPUNOV EXPONENTS OF COCYCLES OVER NON-UNIFORMLY HYPERBOLIC SYSTEMS
    Kalinin, Boris
    Sadovskaya, Victoria
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2018, 38 (10) : 5105 - 5118
  • [22] Non-uniformly hyperbolic flows and shadowing
    Sun, Wenxiang
    Tian, Xueting
    Vargas, Edson
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 261 (01) : 218 - 235
  • [23] Statistics of closest return for some non-uniformly hyperbolic systems
    Collet, P
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2001, 21 : 401 - 420
  • [24] Multifractal analysis for the historic set in topological dynamical systems
    Zhou, Xiaoyao
    Chen, Ercai
    NONLINEARITY, 2013, 26 (07) : 1975 - 1997
  • [25] A Livic Theorem for Matrix Cocycles Over Non-uniformly Hyperbolic Systems
    Backes, Lucas
    Poletti, Mauricio
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2019, 31 (04) : 1825 - 1838
  • [26] Non-uniformly hyperbolic horseshoes in the standard family
    Matheus, Carlos
    Moreira, Carlos Gustavo
    Palis, Jacob
    COMPTES RENDUS MATHEMATIQUE, 2018, 356 (02) : 146 - 149
  • [27] Building Thermodynamics for Non-uniformly Hyperbolic Maps
    Climenhaga V.
    Pesin Y.
    Arnold Mathematical Journal, 2017, 3 (1) : 37 - 82
  • [28] EQUILIBRIUM STATES FOR NON-UNIFORMLY HYPERBOLIC SYSTEMS: STATISTICAL PROPERTIES AND ANALYTICITY
    Afonso, Suzete Maria
    Ramos, Vanessa
    Siqueira, Jaqueline
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2021, 41 (09) : 4485 - 4513
  • [29] A criterion for ergodicity for non-uniformly hyperbolic diffeomorphisms
    Hertz, F. Rodriguez
    Hertz, M. A. Rodriguez
    Tahzibi, A.
    Ures, R.
    ELECTRONIC RESEARCH ANNOUNCEMENTS IN MATHEMATICAL SCIENCES, 2007, 14 : 74 - 81
  • [30] Stochastic stability of non-uniformly hyperbolic diffeomorphisms
    Alves, Jose F.
    Araujo, Vitor
    Vasquez, Carlos H.
    STOCHASTICS AND DYNAMICS, 2007, 7 (03) : 299 - 333